cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072439 Primes prime(k) such that the number of binary 1's in prime(k) equals the number of binary 1's in k.

This page as a plain text file.
%I A072439 #15 Aug 03 2023 03:44:22
%S A072439 2,5,41,67,73,83,97,113,193,197,211,269,281,283,353,389,521,523,547,
%T A072439 563,587,593,601,647,661,691,929,937,1061,1063,1097,1109,1117,1123,
%U A072439 1289,1319,1361,1381,1489,1549,1559,1567,1571,1579,1597,1801,1873,2069
%N A072439 Primes prime(k) such that the number of binary 1's in prime(k) equals the number of binary 1's in k.
%H A072439 Amiram Eldar, <a href="/A072439/b072439.txt">Table of n, a(n) for n = 1..10000</a>
%F A072439 A000120(a(n)) = A000120(A071600(n)) = A014499(n).
%F A072439 A090455(A049084(a(n))) = 0.
%F A072439 a(n) = A000040(A071600(n)).
%e A072439 In binary representation 13 and A000040(13)=41 have three 1's: 13='1101' and 41='101001', therefore 41 is a term.
%t A072439 Prime[Select[Range[400], DigitCount[#, 2, 1] == DigitCount[Prime[#], 2, 1] &]] (* _Amiram Eldar_, Aug 03 2023 *)
%o A072439 (PARI) isok(p) = isprime(p) && ((hammingweight(p) == hammingweight(primepi(p)))); \\ _Michel Marcus_, Jun 14 2021
%Y A072439 Cf. A000040, A000120, A014499, A033548, A049084, A071600, A090455.
%K A072439 nonn,base
%O A072439 1,1
%A A072439 _Reinhard Zumkeller_, Jun 17 2002