This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072446 #17 Oct 02 2024 21:56:36 %S A072446 1,1,2,12,420,254076,18689059680 %N A072446 Number of connectedness systems on n vertices that contain all singletons. %C A072446 From _Gus Wiseman_, Jul 31 2019: (Start) %C A072446 If we define a connectedness system to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges, then a(n) is the number of connectedness systems on n vertices without singleton edges. The BII-numbers of these set-systems are given by A326873. The a(3) = 12 connectedness systems without singletons are: %C A072446 {} %C A072446 {{1,2}} %C A072446 {{1,3}} %C A072446 {{2,3}} %C A072446 {{1,2,3}} %C A072446 {{1,2},{1,2,3}} %C A072446 {{1,3},{1,2,3}} %C A072446 {{2,3},{1,2,3}} %C A072446 {{1,2},{1,3},{1,2,3}} %C A072446 {{1,2},{2,3},{1,2,3}} %C A072446 {{1,3},{2,3},{1,2,3}} %C A072446 {{1,2},{1,3},{2,3},{1,2,3}} %C A072446 (End) %H A072446 Wim van Dam, <a href="http://www.cs.berkeley.edu/~vandam/subpowersets/sequences.html">Sub Power Set Sequences</a> %H A072446 Gus Wiseman, <a href="http://www.mathematica-journal.com/2017/12/every-clutter-is-a-tree-of-blobs/">Every Clutter Is a Tree of Blobs</a>, The Mathematica Journal, Vol. 19, 2017. %F A072446 a(n) = A326866(n)/2^n. - _Gus Wiseman_, Jul 31 2019 %e A072446 a(3)=12 because of the 12 sets: %e A072446 {{1}, {2}, {3}}; %e A072446 {{1}, {2}, {3}, {1, 2}}; %e A072446 {{1}, {2}, {3}, {1, 3}}; %e A072446 {{1}, {2}, {3}, {2, 3}}; %e A072446 {{1}, {2}, {3}, {1, 2, 3}}; %e A072446 {{1}, {2}, {3}, {1, 2}, {1, 2, 3}}; %e A072446 {{1}, {2}, {3}, {1, 3}, {1, 2, 3}}; %e A072446 {{1}, {2}, {3}, {2, 3}, {1, 2, 3}}; %e A072446 {{1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}}; %e A072446 {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}; %e A072446 {{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}; %e A072446 {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. %t A072446 Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],SubsetQ[#,Union@@@Select[Tuples[#,2],Intersection@@#!={}&]]&]],{n,0,3}] (* _Gus Wiseman_, Jul 31 2019 *) %Y A072446 The unlabeled case is A072444. %Y A072446 Exponential transform of A072447 (the connected case). %Y A072446 The case with singletons is A326866. %Y A072446 Binomial transform of A326877 (the covering case). %Y A072446 Cf. A102896, A306445, A326872, A326873. %K A072446 nonn %O A072446 0,3 %A A072446 Wim van Dam (vandam(AT)cs.berkeley.edu), Jun 18 2002 %E A072446 a(6) corrected and definition reformulated by _Christian Sievers_, Oct 26 2023 %E A072446 a(0)=1 prepended by _Sean A. Irvine_, Oct 02 2024