This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072453 #19 Jan 15 2020 07:52:37 %S A072453 0,1,1,0,1,2,0,0,1,0,2,0,0,3,0,0,1,0,0,2,2,0,0,2,0,2,3,0,0,1,0,2,1,0, %T A072453 0,0,0,3,2,0,2,1,0,1,0,0,2,0,0,0,2,0,3,0,0,0,0,0,1,1,0,0,2,0,1,6,0,0, %U A072453 0,0,0,2,0,0,3,0,2,0,0,0,2,0,1,1,0,0,1,0,0,0,0,0,2,0,0,4,0,1,0,0,2,0,0,1,3 %N A072453 Shadow transform of A000522. %H A072453 Alois P. Heinz, <a href="/A072453/b072453.txt">Table of n, a(n) for n = 0..10000</a> %H A072453 Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5 (1999) 138-150. (<a href="http://math.berkeley.edu/~halbeis/publications/psf/seq.ps">ps</a>, <a href="http://math.berkeley.edu/~halbeis/publications/pdf/seq.pdf">pdf</a>); see Definition 7 for the shadow transform. %H A072453 OEIS Wiki, <a href="https://oeis.org/wiki/Shadow_transform">Shadow transform</a>. %H A072453 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>. %p A072453 A000522 := proc(n) %p A072453 add(n!/k!,k=0..n) ; %p A072453 end proc: %p A072453 shadD := proc(a) %p A072453 local s,n ; %p A072453 s := {} ; %p A072453 for n from 0 to a-1 do %p A072453 if A000522(n) mod a = 0 then %p A072453 s := s union {n} ; %p A072453 end if; %p A072453 end do: %p A072453 s ; %p A072453 end proc: %p A072453 A072453 := proc(a) %p A072453 nops(shadD(a)) ; %p A072453 end proc: # _R. J. Mathar_, Jun 24 2013 %p A072453 # second Maple program: %p A072453 b:= proc(n) option remember; n*b(n-1)+1 end: b(0):=1: %p A072453 a:= n-> add(`if`(irem(b(j), n)=0, 1, 0), j=0..n-1): %p A072453 seq(a(n), n=0..150); # _Alois P. Heinz_, Jun 28 2018 %t A072453 b[n_] := b[n] = n*b[n - 1] + 1 ; b[0] = 1; %t A072453 a[n_] := Sum[If[Mod[b[j], n] == 0, 1, 0], {j, 0, n - 1}]; %t A072453 a /@ Range[0, 104] (* _Jean-François Alcover_, Jan 15 2020, after _Alois P. Heinz_ *) %Y A072453 Cf. A000522, A072456. %K A072453 nonn,mult,easy %O A072453 0,6 %A A072453 _N. J. A. Sloane_, Aug 02 2002 %E A072453 More terms from _Christian G. Bower_, Jun 08 2005