This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072478 #36 Feb 16 2025 08:32:46 %S A072478 0,2,2,4,2,8,1,16,1,32,1,64,1,128,1,256,1,512,1,1024,1,2048,1,4096,1, %T A072478 8192,1,16384,1,32768,1,65536,1,131072,1,262144,1,524288,1,1048576,1, %U A072478 2097152,1,4194304,1,8388608,1,16777216,1,33554432,1,67108864,1 %N A072478 Surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1) = n*Pi^(n/2)*r^(n-1)/(n/2)! = S_n*Pi^floor(n/2)*r^(n-1); sequence gives numerator of S_n. %C A072478 Answer to question of how to extend the sequence 0, 2, 2 Pi r, 4 Pi r^2, 2 Pi^2 r^3, ... %C A072478 Volume of n-dimensional sphere of radius r is V_n*r^n - see A072345/A072346. %C A072478 a(2*n-1) = 2^n and for n>2 a(2*n)=1. %C A072478 Denominator of the rational coefficient of integral_{x>0} exp(-x^2)*x^n. - _Jean-François Alcover_, Apr 23 2013 %C A072478 From _Ilya Gutkovskiy_, Aug 02 2016: (Start) %C A072478 Numerator of n/Gamma(n/2+1). %C A072478 More generally, the ordinary generating function for the surface area of the n-dimensional sphere of radius r is 2*x*(1 + exp(Pi*r^2*x^2)*Pi*r*x + exp(Pi*r^2*x^2)*Pi*r*erf(sqrt(Pi)*r*x)*x) = 2*x + 2*Pi*r*x^2 + 4*Pi*r^2*x^3 + 2*Pi^2*r^3*x^4 + (8*Pi^2*r^4/3)*x^5 + Pi^3*r^5*x^6 + ... (End) %D A072478 N. Cakic, D. Letic, B. Davidovic, The Hyperspherical functions of a derivative, Abstr. Appl. Anal. (2010) 364292 doi:10.1155/2010/364292 %D A072478 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 10, Eq. 19. %H A072478 Colin Barker, <a href="/A072478/b072478.txt">Table of n, a(n) for n = 0..1000</a> %H A072478 Dusko Letic, Nenad Cakic, Branko Davidovic and Ivana Berkovic, <a href="http://dx.doi.org/10.1186/1687-1847-2012-22">Orthogonal and diagonal dimension fluxes of hyperspherical function</a>, Advances in Difference Equations 2012, 2012:22. - _N. J. A. Sloane_, Sep 04 2012 %H A072478 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Ball.html">Ball</a> %H A072478 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Hypersphere.html">Hypersphere</a> %H A072478 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Four-DimensionalGeometry.html">Four-Dimensional Geometry</a> %H A072478 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-2). %F A072478 From _Colin Barker_, Sep 04 2012: (Start) %F A072478 a(n) = 3*a(n-2)-2*a(n-4) for n>4. %F A072478 G.f.: x*(2+2*x-2*x^2-4*x^3-x^5+2*x^7) / (1-3*x^2+2*x^4). %F A072478 (End) %F A072478 From _Colin Barker_, Aug 01 2016: (Start) %F A072478 a(n) = (1+(-1)^n-2^((1+n)/2)*(-1+(-1)^n))/2 for n>4. %F A072478 a(n) = 1 for n>4 and even. %F A072478 a(n) = 2^((n+1)/2) for n>4 and odd. %F A072478 (End) %e A072478 Sequence of S_n's begins 0, 2, 2, 4, 2, 8/3, 1, 16/15, 1/3, 32/105, 1/12, 64/945, ... %t A072478 f[n_] := Pi^(n/2 - Floor[n/2])*n/(n/2)!; Table[ Numerator[ f[n]], {n, 0, 52}] %t A072478 CoefficientList[Series[x (2 + 2 x - 2 x^2 - 4 x^3 - x^5 + 2 x^7)/(1 - 3 x^2 + 2 x^4), {x, 0, 52}], x] (* _Michael De Vlieger_, Aug 01 2016 *) %t A072478 LinearRecurrence[{0,3,0,-2},{0,2,2,4,2,8,1,16,1},60] (* _Harvey P. Dale_, May 30 2018 *) %o A072478 (PARI) concat(0, Vec(x*(2+2*x-2*x^2-4*x^3-x^5+2*x^7)/(1-3*x^2+2*x^4) + O(x^100))) \\ _Colin Barker_, Aug 01 2016 %Y A072478 Cf. A072479. A072478(n)/A072479(n) = n*A072345(n)/A072346(n). %K A072478 nonn,frac,easy %O A072478 0,2 %A A072478 _N. J. A. Sloane_, Aug 02 2002 %E A072478 More terms from _Robert G. Wilson v_, Aug 18 2002