This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072491 #21 Aug 09 2015 14:06:15 %S A072491 0,1,1,1,2,1,2,1,2,2,2,1,2,1,2,2,2,1,2,1,2,2,2,1,2,2,2,3,2,1,2,1,2,2, %T A072491 2,3,2,1,2,2,2,1,2,1,2,2,2,1,2,2,2,3,2,1,2,2,2,3,2,1,2,1,2,2,2,3,2,1, %U A072491 2,2,2,1,2,1,2,2,2,3,2,1,2,2,2,1,2,2,2,3,2,1,2,2,2,3,2,3,2,1,2,2,2,1,2,1,2,2 %N A072491 Define f(1) = 0. For n>=2, let f(n) = n - p where p is the largest prime <= n. a(n) = number of iterations of f to reach 0, starting from n. %C A072491 a(p)=1, a(p+1)=2 and a(p+4)=3 if p is an odd prime but p+2 and p+4 are composite. %C A072491 Number of noncomposites (A008578) needed to sum to n using the greedy algorithm. - _Antti Karttunen_, Aug 09 2015 %D A072491 S. S. Pillai, "An arithmetical function concerning primes", Annamalai University Journal (1930), pp. 159-167. %H A072491 Antti Karttunen, <a href="/A072491/b072491.txt">Table of n, a(n) for n = 0..10007</a> %F A072491 On Cramér's conjecture, a(n) = O(log* n). - _Charles R Greathouse IV_, Feb 04 2013 %e A072491 a(27)=3 as f(27)=27-23=4, f(4)=4-3=1 and f(1)=0. %t A072491 f[1]=0; f[n_] := n-Prime[PrimePi[n]]; a[n_] := Module[{k, x}, For[k=0; x=n, x>0, k++; x=f[x], Null]; k] %o A072491 (PARI) a(n)=if(n<4,n>0,1+a(n-precprime(n))) \\ _Charles R Greathouse IV_, Feb 04 2013 %Y A072491 Cf. A008578, A072492. A066352(n) is the smallest k such that a(k)=n. %Y A072491 Not the same as A051034: a(122) = 3, but A051034(122) = 2. %K A072491 nonn,easy %O A072491 0,5 %A A072491 _Amarnath Murthy_, Jul 14 2002 %E A072491 Edited by _Dean Hickerson_, Nov 26 2002 %E A072491 a(0) = 0 prepended by _Antti Karttunen_, Aug 09 2015