This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072496 #20 Mar 06 2020 09:26:49 %S A072496 0,1,4,5,6,9,11,16,19,21,24,25,29,31,36,39,41,44,49,51,56,59,61,64,69, %T A072496 71,75,76,79,81,84,89,91,96,99,101,125,149,151,176,199,201,224,249, %U A072496 251,299,301,349,351,375,376,399,401,424,449,451,499,501,549,551 %N A072496 k-morphic numbers for any k such that (k-1)/10 is an odd integer not divisible by 5. %C A072496 Definition: n is a k-morphic number if n^k ends with n. %o A072496 (PARI) k=11; for(n=1,10000,if((n^k)%(10^ceil(log(n)/log(10)))==n, print1(n,","))); \\ starting with 4, 5, ... %o A072496 (Sage) %o A072496 def automorphic(maxdigits, pow, base=10) : %o A072496 morphs = [[0]] %o A072496 for i in range(maxdigits): %o A072496 T=[d*base^i+x for x in morphs[-1] for d in range(base)] %o A072496 morphs.append([x for x in T if x^pow % base^(i+1) == x]) %o A072496 res = list(set(sum(morphs, []))); res.sort() %o A072496 return res %o A072496 # (call with pow=11 for this sequence), _Eric M. Schmidt_, Jul 30 2013 %Y A072496 Cf. A072495. %Y A072496 3-morphic numbers = 7-morphic numbers, see A033819; 5-morphic numbers = 13-morphic numbers, see A068407. %K A072496 nonn %O A072496 1,3 %A A072496 _Benoit Cloitre_, Oct 19 2002 %E A072496 Sequence corrected by _Eric M. Schmidt_, Jul 30 2013