cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072502 Numbers that are run sums (trapezoidal, the difference between two triangular numbers) in exactly 3 ways.

This page as a plain text file.
%I A072502 #50 Feb 18 2021 02:36:10
%S A072502 9,18,25,36,49,50,72,98,100,121,144,169,196,200,242,288,289,338,361,
%T A072502 392,400,484,529,576,578,676,722,784,800,841,961,968,1058,1152,1156,
%U A072502 1352,1369,1444,1568,1600,1681,1682,1849,1922,1936,2116,2209,2304,2312,2704
%N A072502 Numbers that are run sums (trapezoidal, the difference between two triangular numbers) in exactly 3 ways.
%C A072502 Also numbers that are the product of a power of 2 (A000079) and the square of an odd prime, or numbers having exactly 3 odd divisors: A001227(a(n)) = 3. - _Reinhard Zumkeller_, May 01 2012
%C A072502 Numbers n such that the symmetric representation of sigma(n) has 3 subparts. - _Omar E. Pol_, Dec 28 2016
%C A072502 Also numbers that can be expressed as the sum of k > 1 consecutive positive integers in exactly 2 ways. E.g., 2+3+4 = 9 and 4+5 = 9, 3+4+5+6 = 18 and 5+6+7 = 18. - _Julie Jones_, Aug 13 2018
%C A072502 Appears to be numbers n such that tau(2*n) = tau(n) + 3. - _Gary Detlefs_, Jan 22 2020
%C A072502 Column 3 of A266531. - _Omar E. Pol_, Dec 01 2020
%H A072502 Reinhard Zumkeller, <a href="/A072502/b072502.txt">Table of n, a(n) for n = 1..10000</a>
%H A072502 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/runsums/index.html">Introducing Runsums - a sum of consecutive integers</a>.
%H A072502 T. Verhoeff, <a href="http://www.cs.uwaterloo.ca/journals/JIS/trapzoid.html">Rectangular and Trapezoidal Arrangements</a>, J. Integer Sequences, Vol. 2 (1999), Article #99.1.6.
%F A072502 Sum_{n>=1} 1/a(n) = 2 * Sum_{p odd prime} 1/p^2 = 2 * A085548 - 1/2 = 0.404494... - _Amiram Eldar_, Feb 18 2021
%e A072502 a(1)=9 is the smallest number with 3 run sums: 2+3+4 = 4+5 = 9.
%o A072502 (Haskell)
%o A072502 import Data.Set (singleton, deleteFindMin, insert)
%o A072502 a072502 n = a072502_list !! (n-1)
%o A072502 a072502_list = f (singleton 9) $ drop 2 a001248_list where
%o A072502    f s (x:xs) = m : f (insert (2 * m) $ insert x s') xs where
%o A072502                 (m,s') = deleteFindMin s
%o A072502 -- _Reinhard Zumkeller_, May 01 2012
%Y A072502 Not to be confused with A069562.
%Y A072502 Cf. A001227, A001248, A038547, A038550, A085548, A237593, A266531, A279387.
%K A072502 easy,nonn
%O A072502 1,1
%A A072502 _Ron Knott_, Jan 27 2003
%E A072502 Extended by _Ray Chandler_, Dec 30 2011