This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072502 #50 Feb 18 2021 02:36:10 %S A072502 9,18,25,36,49,50,72,98,100,121,144,169,196,200,242,288,289,338,361, %T A072502 392,400,484,529,576,578,676,722,784,800,841,961,968,1058,1152,1156, %U A072502 1352,1369,1444,1568,1600,1681,1682,1849,1922,1936,2116,2209,2304,2312,2704 %N A072502 Numbers that are run sums (trapezoidal, the difference between two triangular numbers) in exactly 3 ways. %C A072502 Also numbers that are the product of a power of 2 (A000079) and the square of an odd prime, or numbers having exactly 3 odd divisors: A001227(a(n)) = 3. - _Reinhard Zumkeller_, May 01 2012 %C A072502 Numbers n such that the symmetric representation of sigma(n) has 3 subparts. - _Omar E. Pol_, Dec 28 2016 %C A072502 Also numbers that can be expressed as the sum of k > 1 consecutive positive integers in exactly 2 ways. E.g., 2+3+4 = 9 and 4+5 = 9, 3+4+5+6 = 18 and 5+6+7 = 18. - _Julie Jones_, Aug 13 2018 %C A072502 Appears to be numbers n such that tau(2*n) = tau(n) + 3. - _Gary Detlefs_, Jan 22 2020 %C A072502 Column 3 of A266531. - _Omar E. Pol_, Dec 01 2020 %H A072502 Reinhard Zumkeller, <a href="/A072502/b072502.txt">Table of n, a(n) for n = 1..10000</a> %H A072502 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/runsums/index.html">Introducing Runsums - a sum of consecutive integers</a>. %H A072502 T. Verhoeff, <a href="http://www.cs.uwaterloo.ca/journals/JIS/trapzoid.html">Rectangular and Trapezoidal Arrangements</a>, J. Integer Sequences, Vol. 2 (1999), Article #99.1.6. %F A072502 Sum_{n>=1} 1/a(n) = 2 * Sum_{p odd prime} 1/p^2 = 2 * A085548 - 1/2 = 0.404494... - _Amiram Eldar_, Feb 18 2021 %e A072502 a(1)=9 is the smallest number with 3 run sums: 2+3+4 = 4+5 = 9. %o A072502 (Haskell) %o A072502 import Data.Set (singleton, deleteFindMin, insert) %o A072502 a072502 n = a072502_list !! (n-1) %o A072502 a072502_list = f (singleton 9) $ drop 2 a001248_list where %o A072502 f s (x:xs) = m : f (insert (2 * m) $ insert x s') xs where %o A072502 (m,s') = deleteFindMin s %o A072502 -- _Reinhard Zumkeller_, May 01 2012 %Y A072502 Not to be confused with A069562. %Y A072502 Cf. A001227, A001248, A038547, A038550, A085548, A237593, A266531, A279387. %K A072502 easy,nonn %O A072502 1,1 %A A072502 _Ron Knott_, Jan 27 2003 %E A072502 Extended by _Ray Chandler_, Dec 30 2011