This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072505 #17 Mar 19 2018 22:10:28 %S A072505 1,2,3,2,5,3,7,4,3,5,11,2,13,7,5,4,17,3,19,5,7,11,23,2,5,13,9,7,29,1, %T A072505 31,8,11,17,7,3,37,19,13,2,41,7,43,11,3,23,47,4,7,5,17,13,53,9,11,2, %U A072505 19,29,59,1,61,31,3,8,13,11,67,17,23,1,71,3,73,37,5,19,11,13,79,2,9,41,83 %N A072505 a(n) = n / (LCM of divisors of n which are <= sqrt(n)). %H A072505 Robert Israel, <a href="/A072505/b072505.txt">Table of n, a(n) for n = 1..10000</a> %F A072505 From _Robert Israel_, Mar 19 2018: (Start) %F A072505 If n = p^k for prime p, then a(n) = p^ceiling(k/2). %F A072505 In particular, a(n) = n if and only if n is prime. %F A072505 If n = p*q for primes p < q, then a(n) = q. (End) %e A072505 a(20) = 5: the divisors of 20 are 1,2,4,5,10 and 20; a(20) = 20/lcm(1,2,4) = 20/4 = 5. %p A072505 f:= proc(n) n/ilcm(op(select(t -> t^2 <= n, numtheory:-divisors(n)))) end proc: %p A072505 map(f, [$1..100]); # _Robert Israel_, Mar 19 2018 %t A072505 lc[n_]:=Module[{c=Select[Divisors[n],#<=Sqrt[n]&]},n/LCM@@c]; Array[lc,90] (* _Harvey P. Dale_, May 18 2012 *) %Y A072505 Cf. A072504. %K A072505 nonn,look %O A072505 1,2 %A A072505 _Amarnath Murthy_, Jul 20 2002 %E A072505 Corrected and extended by _Matthew Conroy_, Sep 09 2002