This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072574 #29 Oct 18 2022 13:32:45 %S A072574 1,1,0,1,2,0,1,2,0,0,1,4,0,0,0,1,4,6,0,0,0,1,6,6,0,0,0,0,1,6,12,0,0,0, %T A072574 0,0,1,8,18,0,0,0,0,0,0,1,8,24,24,0,0,0,0,0,0,1,10,30,24,0,0,0,0,0,0, %U A072574 0,1,10,42,48,0,0,0,0,0,0,0,0,1,12,48,72,0,0,0,0,0,0,0,0,0,1,12,60,120,0 %N A072574 Triangle T(n,k) of number of compositions (ordered partitions) of n into exactly k distinct parts, 1<=k<=n. %C A072574 If terms in the compositions did not need to be distinct then the triangle would have values C(n-1,k-1), essentially A007318 offset. %H A072574 Joerg Arndt, <a href="/A072574/b072574.txt">Table of n, a(n) for n = 1..5050</a> (rows 1..100, flattened). %H A072574 B. Richmond and A. Knopfmacher, <a href="http://dx.doi.org/10.1007/BF01827930">Compositions with distinct parts</a>, Aequationes Mathematicae 49 (1995), pp. 86-97. %H A072574 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A072574 T(n, k) = T(n-k, k)+k*T(n-k, k-1) [with T(n, 0)=1 if n=0 and 0 otherwise] = A000142(k)*A060016(n, k). %F A072574 G.f.: sum(n>=0, n! * z^n * q^((n^2+n)/2) / prod(k=1..n, 1-q^k ) ), rows by powers of q, columns by powers of z; includes row 0 (drop term for n=0 for this triangle, see PARI code); setting z=1 gives g.f. for A032020. [_Joerg Arndt_, Oct 20 2012] %e A072574 T(6,2)=4 since 6 can be written as 1+5=2+4=4+2=5+1. %e A072574 Triangle starts (trailing zeros omitted for n>=10): %e A072574 [ 1] 1; %e A072574 [ 2] 1, 0; %e A072574 [ 3] 1, 2, 0; %e A072574 [ 4] 1, 2, 0, 0; %e A072574 [ 5] 1, 4, 0, 0, 0; %e A072574 [ 6] 1, 4, 6, 0, 0, 0; %e A072574 [ 7] 1, 6, 6, 0, 0, 0, 0; %e A072574 [ 8] 1, 6, 12, 0, 0, 0, 0, 0; %e A072574 [ 9] 1, 8, 18, 0, 0, 0, 0, 0, 0; %e A072574 [10] 1, 8, 24, 24, 0, 0, ...; %e A072574 [11] 1, 10, 30, 24, 0, 0, ...; %e A072574 [12] 1, 10, 42, 48, 0, 0, ...; %e A072574 [13] 1, 12, 48, 72, 0, 0, ...; %e A072574 [14] 1, 12, 60, 120, 0, 0, ...; %e A072574 [15] 1, 14, 72, 144, 120, 0, 0, ...; %e A072574 [16] 1, 14, 84, 216, 120, 0, 0, ...; %e A072574 [17] 1, 16, 96, 264, 240, 0, 0, ...; %e A072574 [18] 1, 16, 114, 360, 360, 0, 0, ...; %e A072574 [19] 1, 18, 126, 432, 600, 0, 0, ...; %e A072574 [20] 1, 18, 144, 552, 840, 0, 0, ...; %e A072574 These rows (without the zeros) are shown in the Richmond/Knopfmacher reference. %e A072574 From _Gus Wiseman_, Oct 17 2022: (Start) %e A072574 Column n = 8 counts the following compositions. %e A072574 (8) (1,7) (1,2,5) %e A072574 (2,6) (1,3,4) %e A072574 (3,5) (1,4,3) %e A072574 (5,3) (1,5,2) %e A072574 (6,2) (2,1,5) %e A072574 (7,1) (2,5,1) %e A072574 (3,1,4) %e A072574 (3,4,1) %e A072574 (4,1,3) %e A072574 (4,3,1) %e A072574 (5,1,2) %e A072574 (5,2,1) %e A072574 (End) %t A072574 Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],Length[#]==k&]],{n,0,15},{k,1,n}] (* _Gus Wiseman_, Oct 17 2022 *) %o A072574 (PARI) %o A072574 N=21; q='q+O('q^N); %o A072574 gf=sum(n=0,N, n! * z^n * q^((n^2+n)/2) / prod(k=1,n, 1-q^k ) ); %o A072574 /* print triangle: */ %o A072574 gf -= 1; /* remove row zero */ %o A072574 P=Pol(gf,'q); %o A072574 { for (n=1,N-1, %o A072574 p = Pol(polcoeff(P, n),'z); %o A072574 p += 'z^(n+1); /* preserve trailing zeros */ %o A072574 v = Vec(polrecip(p)); %o A072574 v = vector(n,k,v[k]); /* trim to size n */ %o A072574 print(v); %o A072574 ); } %o A072574 /* _Joerg Arndt_, Oct 20 2012 */ %Y A072574 Columns (offset) include A057427 and A052928. %Y A072574 Row sums are A032020. %Y A072574 Cf. A060016, A072576. %Y A072574 A008289 is the version for partitions (zeros removed). %Y A072574 A072575 counts strict compositions by maximum. %Y A072574 A097805 is the non-strict version, or A007318 (zeros removed). %Y A072574 A113704 is the constant instead of strict version. %Y A072574 A216652 is a condensed version (zeros removed). %Y A072574 A336131 counts splittings of partitions with distinct sums. %Y A072574 A336139 counts strict compositions of each part of a strict composition. %Y A072574 Cf. A075900, A097910, A307068, A336127, A336128, A336130, A336132, A336141, A336142, A336342, A336343. %K A072574 nonn,tabl %O A072574 1,5 %A A072574 _Henry Bottomley_, Jun 21 2002