cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072587 Numbers having at least one prime factor with an even exponent.

This page as a plain text file.
%I A072587 #55 May 31 2024 21:03:23
%S A072587 4,9,12,16,18,20,25,28,36,44,45,48,49,50,52,60,63,64,68,72,75,76,80,
%T A072587 81,84,90,92,98,99,100,108,112,116,117,121,124,126,132,140,144,147,
%U A072587 148,150,153,156,162,164,169,171,172,175,176,180,188,192,196,198,200,204
%N A072587 Numbers having at least one prime factor with an even exponent.
%C A072587 Complement of the union of {1} and A002035. [Correction, Nov 15 2012]
%C A072587 A162645 is a subsequence and this sequence is a subsequence of A162643. - _Reinhard Zumkeller_, Jul 08 2009
%C A072587 The asymptotic density of this sequence is 1 - A065463 = 0.2955577990... - _Amiram Eldar_, Jul 21 2020
%C A072587 A number k is a term iff its core (A007913) properly divides its kernel (A007947), that is iff A336643(k) > 1. - _David James Sycamore_, Sep 18 2023
%H A072587 Reinhard Zumkeller, <a href="/A072587/b072587.txt">Table of n, a(n) for n = 1..10000</a>
%t A072587 Select[Range[210], MemberQ[EvenQ[Transpose[FactorInteger[#]][[2]]], True] &] (* _Harvey P. Dale_, Apr 03 2012 *)
%o A072587 (Haskell)
%o A072587 a072587 n = a072587_list !! (n-1)
%o A072587 a072587_list = tail $ filter (any even . a124010_row) [1..]
%o A072587 -- _Reinhard Zumkeller_, Nov 15 2012
%o A072587 (PARI) is(n)=n>3 && Set(factor(n)[,2]%2)[1]==0 \\ _Charles R Greathouse IV_, Oct 16 2015
%o A072587 (Python)
%o A072587 from itertools import count, islice
%o A072587 from sympy import factorint
%o A072587 def A072587_gen(startvalue=1): # generator of terms
%o A072587     return filter(lambda n:not all(map(lambda m:m&1,factorint(n).values())),count(max(startvalue,1)))
%o A072587 A072587_list = list(islice(A072587_gen(),30)) # _Chai Wah Wu_, Jan 04 2023
%Y A072587 Cf. A000037, A000203, A002035, A065463, A072588, A124010, A162643, A162645, A188999.
%Y A072587 Cf. A007913, A007947, A336643.
%K A072587 nonn
%O A072587 1,1
%A A072587 _Reinhard Zumkeller_, Jun 23 2002
%E A072587 Thanks to _Zak Seidov_, who noticed that 1 had to be removed. - _Reinhard Zumkeller_, Nov 15 2012