cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072588 Numbers having at least one prime factor with an odd and one with an even exponent.

This page as a plain text file.
%I A072588 #20 Sep 25 2023 08:56:48
%S A072588 12,18,20,28,44,45,48,50,52,60,63,68,72,75,76,80,84,90,92,98,99,108,
%T A072588 112,116,117,124,126,132,140,147,148,150,153,156,162,164,171,172,175,
%U A072588 176,180,188,192,198,200,204,207,208,212,220,228,234,236,240,242,244
%N A072588 Numbers having at least one prime factor with an odd and one with an even exponent.
%C A072588 = Complement(Union(A002035, A000290)) = Intersection(A000037, A072587);
%C A072588 a(k)=A070011(k) for 0<k<=25, A070011(26)=120 is not a term, as 120=5*3*2^3 having only odd exponents (A002035(85)=120), and a(54)=240 is not a term of A070011, as from 240=5*3*2^4 follows that A001222(240)/A001221(240)=6/3=2 is an integer.
%C A072588 The asymptotic density of this sequence is 1 - A065463 = 0.2955577990... - _Amiram Eldar_, Sep 18 2022
%C A072588 Numbers k such that A007913(k) properly divides A007947(k). (Same as A072587 without square terms). A number k is in this sequence iff 1 < A007913(k) < A007947(k) < k, and A007913(k)|A007947(k), equivalently iff k is not in A000037 and A336643(k) is squarefree. - _David James Sycamore_, Sep 20 2023
%H A072588 Reinhard Zumkeller, <a href="/A072588/b072588.txt">Table of n, a(n) for n = 1..10000</a>
%t A072588 oeeQ[n_]:=Module[{fi=Transpose[FactorInteger[n]][[2]]},Count[fi,_?OddQ]>0  && Count[fi,_?EvenQ]>0]; Select[Range[250],oeeQ] (* _Harvey P. Dale_, Jun 21 2015 *)
%o A072588 (Haskell)
%o A072588 a072588 n = a072588_list !! (n-1)
%o A072588 a072588_list = filter f [1..] where
%o A072588    f x = any odd es && any even es  where es = a124010_row x
%o A072588 -- _Reinhard Zumkeller_, Nov 15 2012
%o A072588 (PARI) is(n)=#Set(factor(n)[,2]%2)==2 \\ _Charles R Greathouse IV_, Oct 16 2015
%Y A072588 Cf. A000037, A000290, A001221, A001222, A002035, A065463, A070011, A072587, A124010.
%Y A072588 Cf. A007913, A007947, A336643.
%K A072588 nonn
%O A072588 1,1
%A A072588 _Reinhard Zumkeller_, Jun 23 2002