cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072590 Table T(n,k) giving number of spanning trees in complete bipartite graph K(n,k), read by antidiagonals.

This page as a plain text file.
%I A072590 #43 Feb 16 2025 08:32:46
%S A072590 1,1,1,1,4,1,1,12,12,1,1,32,81,32,1,1,80,432,432,80,1,1,192,2025,4096,
%T A072590 2025,192,1,1,448,8748,32000,32000,8748,448,1,1,1024,35721,221184,
%U A072590 390625,221184,35721,1024,1,1,2304,139968,1404928,4050000,4050000
%N A072590 Table T(n,k) giving number of spanning trees in complete bipartite graph K(n,k), read by antidiagonals.
%D A072590 J. W. Moon, Counting Labeled Trees, Issue 1 of Canadian mathematical monographs, Canadian Mathematical Congress, 1970.
%D A072590 R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Exercise 5.66.
%H A072590 T. D. Noe, <a href="/A072590/b072590.txt">Antidiagonals d=1..50, flattened</a>
%H A072590 Taylor Brysiewicz and Aida Maraj, <a href="https://arxiv.org/abs/2310.13064">Lawrence Lifts, Matroids, and Maximum Likelihood Degrees</a>, arXiv:2310.13064 [math.CO], 2023. See p. 13.
%H A072590 H. I. Scoins, <a href="https://doi.org/10.1017/S0305004100036173">The number of trees with nodes of alternate parity</a>, Proc. Cambridge Philos. Soc. 58 (1962) 12-16.
%H A072590 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a>
%H A072590 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a>
%F A072590 T(n, k) = n^(k-1) * k^(n-1).
%F A072590 E.g.f.: A(x,y) - 1, where: A(x,y) = exp( x*exp( y*A(x,y) ) ) = Sum_{n>=0} Sum_{k=0..n} (n-k)^k * (k+1)^(n-k-1) * x^(n-k)/(n-k)! * y^k/k!. - _Paul D. Hanna_, Jan 22 2019
%e A072590 From _Andrew Howroyd_, Oct 29 2019: (Start)
%e A072590 Array begins:
%e A072590 ============================================================
%e A072590 n\k | 1   2     3       4        5         6           7
%e A072590 ----+-------------------------------------------------------
%e A072590   1 | 1   1     1       1        1         1           1 ...
%e A072590   2 | 1   4    12      32       80       192         448 ...
%e A072590   3 | 1  12    81     432     2025      8748       35721 ...
%e A072590   4 | 1  32   432    4096    32000    221184     1404928 ...
%e A072590   5 | 1  80  2025   32000   390625   4050000    37515625 ...
%e A072590   6 | 1 192  8748  221184  4050000  60466176   784147392 ...
%e A072590   7 | 1 448 35721 1404928 37515625 784147392 13841287201 ...
%e A072590   ...
%e A072590 (End)
%t A072590 t[n_, k_] := n^(k-1) * k^(n-1); Table[ t[n-k+1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Feb 21 2013 *)
%o A072590 (PARI) {T(n, k) = if( n<1 || k<1, 0, n^(k-1) * k^(n-1))}
%Y A072590 Columns 2..3 are A001787, A069996.
%Y A072590 Main diagonal is A068087.
%Y A072590 Antidiagonal sums are A132609.
%Y A072590 Cf. A070285, A328887, A328888.
%K A072590 nonn,tabl,easy,nice
%O A072590 1,5
%A A072590 _Michael Somos_, Jun 23 2002
%E A072590 Scoins reference from _Philippe Deléham_, Dec 22 2003