This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072601 #41 Aug 12 2023 17:20:57 %S A072601 1,2,3,5,6,7,9,10,11,12,13,14,15,19,21,22,23,25,26,27,28,29,30,31,35, %T A072601 37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61, %U A072601 62,63,71,75,77,78,79,83,85,86,87,89,90,91,92,93,94,95,99,101,102,103 %N A072601 Numbers which in base 2 have at least as many 1's as 0's. %H A072601 T. D. Noe, <a href="/A072601/b072601.txt">Table of n, a(n) for n = 1..5370</a> (numbers < 2^13) %H A072601 Jason Bell, Thomas Finn Lidbetter, Jeffrey Shallit, <a href="https://arxiv.org/abs/1804.07996">Additive Number Theory via Approximation by Regular Languages</a>, arXiv:1804.07996 [cs.FL], 2018. %H A072601 Thomas Finn Lidbetter, <a href="https://uwspace.uwaterloo.ca/bitstream/handle/10012/14254/Lidbetter_Thomas.pdf">Counting, Adding, and Regular Languages</a>, Master's Thesis, University of Waterloo, Ontario, Canada, 2018. %H A072601 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %e A072601 8 = 1000_2 is not present (one '1', three '0's). %e A072601 10 is present because 10=1010_2 contains 2 '0's and 2 '1's: 2<=2; %e A072601 11 is present because 11=1011_2 contains 1 '0' and 3 '1's: 1<=3. %t A072601 geQ[n_] := Module[{a, b}, {a, b} = DigitCount[n, 2]; a >= b]; Select[Range[103], geQ] (* _T. D. Noe_, Apr 20 2013 *) %t A072601 Select[Range[110],DigitCount[#,2,1]>=DigitCount[#,2,0]&] (* _Harvey P. Dale_, Aug 12 2023 *) %o A072601 (Haskell) %o A072601 a072601 n = a072601_list !! (n-1) %o A072601 a072601_list = filter ((<= 0) . a037861) [0..] %o A072601 -- _Reinhard Zumkeller_, Aug 01 2013 %o A072601 (PARI) is(n)=2*hammingweight(n)>exponent(n) \\ _Charles R Greathouse IV_, Apr 18 2020 %Y A072601 Cf. A007088, A000120, A023416, A061854. %Y A072601 Cf. A037861(a(n)) <= 0. %Y A072601 Cf. A072600 (#0's < #1's), this seq (#0's <= #1's), A031443 (#0's = #1's). %Y A072601 Cf. A072602 (#0's >= #1's), A072603 (#0's > #1's), A044951 (#0's <> #1's). %K A072601 nonn,base,easy %O A072601 1,2 %A A072601 _Reinhard Zumkeller_, Jun 23 2002