This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072608 #19 Aug 20 2024 09:08:38 %S A072608 0,1,0,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,1, %T A072608 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %U A072608 0,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0 %N A072608 Parity of remainder Mod(prime(n),n) = A004648(n). %H A072608 Reinhard Zumkeller, <a href="/A072608/b072608.txt">Table of n, a(n) for n = 1..10000</a> %F A072608 a(n) = Mod(Mod(prime(n), n), 2) = Mod(A004648(n), 2). %e A072608 n=25:p(25)=97,Mod[97,25]=22, a(25)=Mod[22,2]=0. With increasing n, a(n) alternates:...010101..,followed after by a range consisting only of 1-s. This secondary alternation also goes on. %t A072608 mm[x_] := Mod[Mod[Prime[x], x], 2] Table[mm[w], {w, 1, 256}] %t A072608 Table[Mod[Mod[Prime[n],n],2],{n,110}] (* _Harvey P. Dale_, Apr 22 2016 *) %o A072608 (Haskell) %o A072608 a072608 n = a000040 n `mod` n `mod` 2 -- _Reinhard Zumkeller_, Dec 16 2013 %o A072608 (PARI) a(n)=prime(n)%n%2 \\ _Charles R Greathouse IV_, Feb 09 2017 %Y A072608 Cf. A004648. %K A072608 nice,nonn,easy %O A072608 1,1 %A A072608 _Labos Elemer_, Jun 24 2002