A072692 Sum of sigma(j) for 1<=j<=10^n, where sigma(j) is the sum of the divisors of j.
1, 87, 8299, 823081, 82256014, 8224740835, 822468118437, 82246711794796, 8224670422194237, 822467034112360628, 82246703352400266400, 8224670334323560419029, 822467033425357340138978, 82246703342420509396897774, 8224670334241228180927002517
Offset: 0
Keywords
Examples
For n=1, the sum of sigma(j) for j<=10 is 1+3+4+7+6+12+8+15+13+18=87, so a(1)=87 (=69+18=A049000(1)+A046915(1)).
Links
- P. L. Patodia, Seth Troisi and Hiroaki Yamanouchi, Table of n, a(n) for n = 0..36 (terms a(0)-a(18) by P. L. Patodia and a(19)-a(24) by Seth Troisi)
- Leonhard Euler, Découverte d'une loi tout extraordinaire des nombres par rapport à la somme de leurs diviseurs, 1747, The Euler Archive, (Eneström Index) E175.
- P. L. Patodia (pannalal(AT)usa.net), PARI program for A072692 and A024916
Crossrefs
Programs
-
PARI
for(m=0,10,print1(sum(n=1,k=10^m,n*(k\n)),",")) \\ Improved by M. F. Hasler, Apr 18 2015
-
PARI
A072692(n)=A024916(10^n) \\ This is very efficient, using efficient code of A024916. - M. F. Hasler, Apr 18 2015
-
Python
[(i, sum([d*(10**i//d) for d in range(1,10**i+1)])) for i in range(8)] # Seth A. Troisi, Jun 27 2010
-
Python
from math import isqrt def A072692(n): return -(s:=isqrt(m:=10**n))**2*(s+1)+sum((q:=m//k)*((k<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 23 2023
Formula
Extensions
More terms from P L Patodia (pannalal(AT)usa.net), Jan 11 2008, Jun 25 2008