cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072692 Sum of sigma(j) for 1<=j<=10^n, where sigma(j) is the sum of the divisors of j.

Original entry on oeis.org

1, 87, 8299, 823081, 82256014, 8224740835, 822468118437, 82246711794796, 8224670422194237, 822467034112360628, 82246703352400266400, 8224670334323560419029, 822467033425357340138978, 82246703342420509396897774, 8224670334241228180927002517
Offset: 0

Views

Author

Rick L. Shepherd, Jul 02 2002

Keywords

Examples

			For n=1, the sum of sigma(j) for j<=10 is 1+3+4+7+6+12+8+15+13+18=87, so a(1)=87 (=69+18=A049000(1)+A046915(1)).
		

Crossrefs

Compare with A049000. Note that a(n) = A049000(n) + A046915(n).
Cf. A000203 (sigma(n)), A072691 (Pi^2/12), A049000, A046915, A024916, A025281.

Programs

  • PARI
    for(m=0,10,print1(sum(n=1,k=10^m,n*(k\n)),",")) \\ Improved by M. F. Hasler, Apr 18 2015
    
  • PARI
    A072692(n)=A024916(10^n) \\ This is very efficient, using efficient code of A024916. - M. F. Hasler, Apr 18 2015
  • Python
    [(i, sum([d*(10**i//d) for d in range(1,10**i+1)])) for i in range(8)] # Seth A. Troisi, Jun 27 2010
    
  • Python
    from math import isqrt
    def A072692(n): return -(s:=isqrt(m:=10**n))**2*(s+1)+sum((q:=m//k)*((k<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 23 2023
    

Formula

Asymptotic formula: a(n) ~ Pi^2/12 * 10^2n. See A072691 for Pi^2/12. Observe that A025281 also contains that constant in its asymptotic formula.

Extensions

More terms from P L Patodia (pannalal(AT)usa.net), Jan 11 2008, Jun 25 2008
Corrected by N. J. A. Sloane, Jun 08 2008, following suggestions from Don Reble and David W. Wilson