cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072707 Number of non-unimodal compositions of n into distinct terms.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 2, 4, 6, 24, 26, 46, 64, 100, 224, 276, 416, 590, 850, 1144, 2214, 2644, 3938, 5282, 7504, 9776, 13704, 21984, 27632, 38426, 51562, 69844, 91950, 123504, 159658, 246830, 303400, 416068, 540480, 730268, 933176, 1248110
Offset: 0

Views

Author

Henry Bottomley, Jul 04 2002

Keywords

Comments

Also the number of compositions of n into distinct terms whose negation is not unimodal. - Gus Wiseman, Mar 05 2020

Examples

			a(6)=2 since 6 can be written as 2+1+3 or 3+1+2.
From _Gus Wiseman_, Mar 05 2020: (Start)
The a(6) = 2 through a(9) = 6 strict compositions:
  (2,1,3)  (2,1,4)  (2,1,5)  (2,1,6)
  (3,1,2)  (4,1,2)  (3,1,4)  (3,1,5)
                    (4,1,3)  (3,2,4)
                    (5,1,2)  (4,2,3)
                             (5,1,3)
                             (6,1,2)
(End)
		

Crossrefs

The complement is counted by A072706.
The non-strict version is A115981.
The case where the negation is not unimodal either is A332874.
Unimodal compositions are A001523.
Strict compositions are A032020.
Non-unimodal permutations are A059204.
A triangle for strict unimodal compositions is A072705.
Non-unimodal sequences covering an initial interval are A328509.
Numbers whose prime signature is not unimodal are A332282.
Strict partitions whose 0-appended differences are not unimodal are A332286.
Compositions whose negation is unimodal are A332578.
Compositions whose negation is not unimodal are A332669.
Non-unimodal compositions covering an initial interval are A332743.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!unimodQ[#]&]],{n,0,16}] (* Gus Wiseman, Mar 05 2020 *)

Formula

a(n) = A032020(n) - A072706(n) = Sum_{k} A059204(k) * A060016(n, k).