This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072710 #16 Dec 24 2015 11:44:03 %S A072710 6,24,27,33,66,84,87,93,126,144,147,153,186,204,207,213,246,264,267, %T A072710 273,306,324,327,333,366,384,387,393,426,444,447,453,486,504,507,513, %U A072710 546,564,567,573,606,624,627,633,666,684,687,693,726,744,747,753,786 %N A072710 Last digit of F(n) is 8 where F(n) is the n-th Fibonacci number. %C A072710 Sequence contains numbers of form (6+60k), (24+60k), (27+60k), (33+60k), with k>=0. %H A072710 Colin Barker, <a href="/A072710/b072710.txt">Table of n, a(n) for n = 1..1000</a> %H A072710 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1). %F A072710 G.f.: x*(27*x^4+6*x^3+3*x^2+18*x+6) / (x^5-x^4-x+1). - _Colin Barker_, Jun 16 2013 %F A072710 a(n) = (-60 - 6*(-1)^n - (21-9*i)*(-i)^n - (21+9*i)*i^n + 60*n) / 4 where i=sqrt(-1). - _Colin Barker_, Oct 16 2015 %o A072710 (PARI) a(n) = (-60 - 6*(-1)^n - (21-9*I)*(-I)^n - (21+9*I)*I^n + 60*n) / 4 \\ _Colin Barker_, Oct 16 2015 %o A072710 (PARI) Vec(x*(27*x^4+6*x^3+3*x^2+18*x+6)/(x^5-x^4-x+1) + O(x^100)) \\ _Colin Barker_, Oct 16 2015 %Y A072710 Cf. A000045, A003893. %K A072710 nonn,base,easy %O A072710 1,1 %A A072710 _Benoit Cloitre_, Aug 07 2002