A072720 Number of partitions of n into parts which are each powers of a single number (which may vary between partitions).
1, 1, 2, 3, 5, 6, 10, 11, 15, 17, 23, 24, 34, 35, 43, 47, 57, 58, 73, 74, 91, 96, 112, 113, 139, 141, 163, 168, 197, 198, 235, 236, 272, 279, 317, 321, 378, 379, 427, 436, 501, 502, 575, 576, 653, 666, 742, 743, 851, 853, 952, 963, 1080, 1081, 1211, 1216, 1361
Offset: 0
Keywords
Examples
a(6)=10 since 6 can be written as 6 (powers of 6), 5+1 (5), 4+1+1 (4 or 2), 3+3 (3), 3+1+1+1 (3), 4+2 (2), 2+2+2 (2), 2+2+1+1 (2), 2+1+1+1+1 (2) and 1+1+1+1+1+1 (powers of anything). From _Gus Wiseman_, Jan 01 2019: (Start) The a(1) = 1 through a(8) = 15 integer partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (41) (33) (61) (44) (111) (31) (221) (42) (331) (71) (211) (311) (51) (421) (422) (1111) (2111) (222) (511) (611) (11111) (411) (2221) (2222) (2211) (4111) (3311) (3111) (22111) (4211) (21111) (31111) (5111) (111111) (211111) (22211) (1111111) (41111) (221111) (311111) (2111111) (11111111) (End)
Crossrefs
Programs
-
Mathematica
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]); Table[Length[Select[IntegerPartitions[n],SameQ@@radbase/@DeleteCases[#,1]&]],{n,30}] (* Gus Wiseman, Jan 01 2019 *)
Formula
a(n) = a(n-1) + A072721(n). a(p) = a(p-1)+1 for p prime.
Comments