cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072726 Numerator of the rationals >= 1 whose continued fractions consist of only even terms, in ascending order by the sum of the continued fraction terms and descending by lowest order continued fraction terms to highest.

This page as a plain text file.
%I A072726 #11 Dec 25 2016 01:09:58
%S A072726 1,2,4,5,6,9,9,12,8,13,17,22,13,20,22,29,10,17,25,32,25,38,40,53,17,
%T A072726 28,38,49,32,49,53,70,12,21,33,42,37,56,58,77,33,54,72,93,58,89,97,
%U A072726 128,21,36,54,69,56,85,89,118,42,69,93,120,77,118,128,169
%N A072726 Numerator of the rationals >= 1 whose continued fractions consist of only even terms, in ascending order by the sum of the continued fraction terms and descending by lowest order continued fraction terms to highest.
%H A072726 T. D. Noe, <a href="/A072726/b072726.txt">Table of n, a(n) for n = 0..1023</a>
%F A072726 a(2^k + 2^j + m) = 2(k-j)*a(2^j + m) + a(m) when 2^k > 2^j > m >=0. a(0) = 1, a(2^k) = 2(k+1), a(2^k + 1) = 4*k + 1 (k>0), a(2^k - 1) = the (k+1)-th Pell number.
%e A072726 n: a(n)/A072727 has continued fraction:
%e A072726 0: 1/0 = [infinity]
%e A072726 1: 2/1 = [2]
%e A072726 2: 4/1 = [4]
%e A072726 3: 5/2 = [2;2]
%e A072726 4: 6/1 = [6]
%e A072726 5: 9/2 = [4;2]
%e A072726 6: 9/4 = [2;4]
%e A072726 7: 12/5 = [2;2,2]
%e A072726 8: 8/1 = [8]
%e A072726 9: 13/2 = [6;2]
%e A072726 10: 17/4 = [4;4]
%e A072726 11: 22/5 = [4;2,2]
%e A072726 12: 13/6 = [2;6]
%e A072726 13: 20/9 = [2;4,2]
%e A072726 14: 22/9 = [2;2,4]
%e A072726 15: 29/12= [2;2,2,2]
%t A072726 a[0] = 1; a[n_] := a[n] = Which[IntegerQ[k = Log[2, n]], 2 (k + 1), IntegerQ[k = Log[2, n - 1]], 4 k + 1, IntegerQ[k = Log[2, n + 1]], Fibonacci[k + 1, 2], True, Clear[k]; Hold[2*(k - j)*a[2^j + m] + a[m]] /. ToRules[Reduce[2^k > 2^j > m >= 0 && n == 2^k + 2^j + m, {k, j, m}, Integers]] // ReleaseHold];
%t A072726 Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 63}] (* _Jean-François Alcover_, Jul 13 2016 *)
%Y A072726 Cf. A072727, A071585, A071766, A072728, A072729, A000129.
%K A072726 easy,frac,nice,nonn
%O A072726 0,2
%A A072726 _Paul D. Hanna_, Jul 09 2002