This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072728 #4 Mar 30 2012 18:36:32 %S A072728 1,2,3,5,5,8,7,8,12,13,11,12,13,19,19,21,17,18,19,19,21,29,31,30,31, %T A072728 34,27,26,29,29,31,30,31,34,46,45,50,46,49,49,50,55,41,44,41,43,47,46, %U A072728 45,50,46,49,49,50,55 %N A072728 Numerator of rationals >= 1 whose continued fractions consist only of 1's and 2's, in ascending order by the sum of the continued fraction terms and descending by lowest order continued fraction terms to highest. %F A072728 a(F(n)+F(n-3)+m) = a(F(n-1)+m) + a(F(n-3)+m) when 0<m<=F(n-2), n>2; a(F(n)+m) = 2*a(F(n-2)+m) + a(F(n-4)+m) when 0<m<=F(n-3), n>3; where a(0)=1, a(F(n)-1) = F(n) = n-th Fibonacci number; a(F(2n-1)) = n-th Pell number. %e A072728 n: a(n)/A072729(n) has continued fraction: %e A072728 0: 1/1 = [1] %e A072728 1: 2/1 = [2] %e A072728 2: 3/2 = [1;2] %e A072728 3: 5/2 = [2;2] %e A072728 4: 5/3 = [1;1,2] %e A072728 5: 8/3 = [2;1,2] %e A072728 6: 7/5 = [1;2,2] %e A072728 7: 8/5 = [1;1,1,2] %e A072728 8: 12/5 = [2;2,2] %e A072728 9: 13/5 = [2;1,1,2] %e A072728 10: 11/8 = [1;2,1,2] %e A072728 11: 12/7 = [1;1,2,2] %e A072728 12: 13/8 = [1;1,1,1,2] %e A072728 13: 19/8 = [2;2,1,2] %e A072728 14: 19/7 = [2;1,2,2] %e A072728 15: 21/8 = [2;1,1,1,2] %e A072728 16: 17/12= [1;2,2,2] %e A072728 17: 18/13= [1;2,1,1,2] %e A072728 18: 19/11= [1;1,2,1,2] %e A072728 19: 19/12= [1;1,1,2,2] %e A072728 20: 21/13= [1;1,1,1,1,2] %Y A072728 Cf. A072729, A071585, A071766, A072726, A072727, A000129. %K A072728 easy,frac,nice,nonn %O A072728 0,2 %A A072728 _Paul D. Hanna_, Jul 09 2002