This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072742 #29 Jan 22 2022 08:43:58 %S A072742 3,5,13,17,23,61,83,89,107,139,163,181,199,229,241,263,281,347,383, %T A072742 431,461,467,503,577,601,619,727,751,757,769,811,877,919,997,1009, %U A072742 1097,1187,1193,1217,1259,1277,1307,1319,1367,1409,1433,1439,1487,1553,1619,1637,1697,1787,1823,1889,1997,2027 %N A072742 Lesser members of a pair of primes (p, q) such that, for some integer k, (p+q)/2 = 2^k and p > 2^(k-1). %C A072742 For each term p=a(n), the corresponding greater member is q=A072743(n). %H A072742 Michel Marcus, <a href="/A072742/b072742.txt">Table of n, a(n) for n = 1..8217</a> %e A072742 n p = a(n) q = A072743(n) (p+q)/2 %e A072742 -- -------- -------------- --------- %e A072742 1 3 5 4 = 2^2 %e A072742 2 5 11 8 = 2^3 %e A072742 3 13 19 16 = 2^4 %e A072742 4 17 47 32 = 2^5 %e A072742 5 23 41 32 = 2^5 %e A072742 6 61 67 64 = 2^6 %e A072742 7 83 173 128 = 2^7 %e A072742 8 89 167 128 = 2^7 %e A072742 9 107 149 128 = 2^7 %e A072742 10 139 373 256 = 2^8 %e A072742 As an irregular triangle, sequence begins: %e A072742 [3], (k=2) %e A072742 [5], (k=3) %e A072742 [13], (k=4) %e A072742 [17, 23], (k=5) %e A072742 [61], (k=6) %e A072742 [83, 89, 107], (k=7) %e A072742 [139, 163, 181, 199, 229, 241], (k=8) %e A072742 ... %o A072742 (PARI) listk(k) = {my(list = List()); forprime(p=2^(k-1)+1, 2^k, my(q=2^(k+1)-p); if ((q>p) && isprime(q), listput(list, p));); Vec(list);} %o A072742 upto(k) = {my(list = List()); for (i=1, k, my(klist = listk(i)); if (#klist, for (j=1, #klist, listput(list, klist[j])));); Vec(list);} %o A072742 upto(11) \\ _Michel Marcus_, Jan 22 2022 %Y A072742 Cf. A072743, A072744, A072745, A072746. %K A072742 nonn,tabf %O A072742 1,1 %A A072742 _Reinhard Zumkeller_, Jul 08 2002 %E A072742 Name corrected by _Jon E. Schoenfield_, Jun 27 2021 %E A072742 More terms from _Michel Marcus_, Jan 22 2022