This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072775 #12 Aug 19 2024 02:20:49 %S A072775 1,2,3,2,5,6,7,2,3,10,11,13,14,15,2,17,19,21,22,23,5,26,3,29,30,31,2, %T A072775 33,34,35,6,37,38,39,41,42,43,46,47,7,51,53,55,57,58,59,61,62,2,65,66, %U A072775 67,69,70,71,73,74,77,78,79,3,82,83,85,86,87,89,91,93,94,95,97,10,101 %N A072775 Squarefree kernels of powers of squarefree numbers. %C A072775 a(n) = A007947(A072774(n)); %C A072775 A072774(n) = a(n)^A072776(n); %C A072775 A072774(n) is squarefree iff A072774(n)=a(n). %H A072775 Reinhard Zumkeller, <a href="/A072775/b072775.txt">Table of n, a(n) for n = 1..10000</a> %o A072775 (Haskell) %o A072775 a072775 n = a072775_list !! (n-1) -- a072775_list defined in A072774. %o A072775 -- _Reinhard Zumkeller_, Apr 06 2014 %o A072775 (Python) %o A072775 from math import isqrt, prod %o A072775 from sympy import mobius, integer_nthroot, primefactors %o A072775 def A072775(n): %o A072775 def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))-1 %o A072775 def f(x): return n-2+x-sum(g(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())) %o A072775 kmin, kmax = 1,2 %o A072775 while f(kmax) >= kmax: %o A072775 kmax <<= 1 %o A072775 while True: %o A072775 kmid = kmax+kmin>>1 %o A072775 if f(kmid) < kmid: %o A072775 kmax = kmid %o A072775 else: %o A072775 kmin = kmid %o A072775 if kmax-kmin <= 1: %o A072775 break %o A072775 return prod(primefactors(kmax)) # _Chai Wah Wu_, Aug 19 2024 %Y A072775 Cf. A052410. %K A072775 nonn %O A072775 1,2 %A A072775 _Reinhard Zumkeller_, Jul 10 2002