cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072822 The terms of A073215 (sums of two powers of 23) divided by 2.

This page as a plain text file.
%I A072822 #15 Apr 09 2025 19:47:20
%S A072822 1,12,23,265,276,529,6084,6095,6348,12167,139921,139932,140185,146004,
%T A072822 279841,3218172,3218183,3218436,3224255,3358092,6436343,74017945,
%U A072822 74017956,74018209,74024028,74157865,77236116,148035889,1702412724
%N A072822 The terms of A073215 (sums of two powers of 23) divided by 2.
%F A072822 T(n,m) = (23^n + 23^m) / 2, n = 0, 1, 2, 3 ..., m = 0, 1, 2, 3, ... n.
%e A072822 T(2,0) = 265 = (23^2 + 23^0) / 2.
%e A072822 Triangle begins:
%e A072822         1;
%e A072822        12,      23;
%e A072822       265,     276,     529;
%e A072822      6084,    6095,    6348,   12167;
%e A072822    139921,  139932,  140185,  146004,  279841;
%e A072822   3218172, 3218183, 3218436, 3224255, 3358092, 6436343;
%e A072822   ...
%t A072822 Union[#/2&/@(Total/@Tuples[23^Range[0,7],{2}])]  (* _Harvey P. Dale_, Apr 21 2011 *)
%o A072822 (Python)
%o A072822 from math import isqrt
%o A072822 def A072822(n): return 23**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+23**(n-1-(a*(a+1)>>1))>>1 # _Chai Wah Wu_, Apr 09 2025
%Y A072822 Cf. A073215.
%K A072822 nonn,tabl,easy
%O A072822 0,2
%A A072822 _Jeremy Gardiner_, Jul 21 2002
%E A072822 Offset changed by _Alois P. Heinz_, Apr 09 2025