This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072829 #17 Jan 21 2025 22:26:36 %S A072829 2,5,9,16,23,32,42,54,68,82,99,116,135,156,178,201,226,252,280,309, %T A072829 340,372,406,441,477,515,554,595,637,681,726,772,820,869,920,973,1026, %U A072829 1081,1138,1196,1256,1316,1379,1443,1508,1575,1643,1712,1783,1856,1930,2005 %N A072829 Greatest m such that Product_{k=1..n-1} (1 - k/m) <= 1/2. %C A072829 Among n randomly selected dates over an interval of m days (or less), the odds are even (or better than even) for two or more of them to coincide. %F A072829 Corresponds to the ultimate occurrence of n in A033810. For large n, m has magnitude n^2 / 2 * log(2). %e A072829 Thus a(7)=32 for instance implies that among 7 persons bearing the same astrological sign(extending over 30 days or so) the odds are trifle better than even for at least two of them further sharing a common birthday. %t A072829 f[n_] := (k = 1; While[ Product[1 - i/k, {i, 1, (n - 1)}] <= 1/2, k++ ]; Return[k - 1]); Table[ f[n], {n, 2, 53}] %o A072829 (Python) %o A072829 from math import factorial, comb %o A072829 def A072829(n): %o A072829 f = factorial(n) %o A072829 def p(m): return comb(m,n)*f<<1 %o A072829 kmin, kmax = n-1, n %o A072829 while p(kmax) <= kmax**n: kmax<<=1 %o A072829 while kmax-kmin > 1: %o A072829 kmid = kmax+kmin>>1 %o A072829 if p(kmid) > kmid**n: %o A072829 kmax = kmid %o A072829 else: %o A072829 kmin = kmid %o A072829 return kmin # _Chai Wah Wu_, Jan 21 2025 %Y A072829 Cf. A033810, A064619. %K A072829 nonn %O A072829 2,1 %A A072829 _Lekraj Beedassy_, Jul 22 2002 %E A072829 Edited and extended by _Robert G. Wilson v_, Jul 23 2002 %E A072829 More terms from _David Terr_, Jan 03 2005