cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072834 Exponents occurring in expansion of F_8(q^2).

This page as a plain text file.
%I A072834 #25 Jan 17 2022 11:26:13
%S A072834 0,7,12,15,16,23,28,31,32,39,44,47,48,55,60,63,64,71,76,79,80,87,92,
%T A072834 95,96,103,108,111,112,119,124,127,128,135,140,143,144,151,156,159,
%U A072834 160,167,172,175,176,183,188,191,192,199,204,207,208,215,220,223,224,231,236,239,240,247
%N A072834 Exponents occurring in expansion of F_8(q^2).
%H A072834 G. C. Greubel, <a href="/A072834/b072834.txt">Table of n, a(n) for n = 0..1000</a>
%H A072834 S. Ahlgren, <a href="https://doi.org/10.1090/S0002-9939-99-05181-3">The sixth, eighth, ninth and tenth powers of Ramanujan's theta function</a>, Proc. Amer. Math. Soc. 128 (2000), 1333-1338.
%F A072834 Empirical g.f.: x*(x^3+3*x^2+5*x+7) / (x^5-x^4-x+1). - _Colin Barker_, Jul 31 2013
%F A072834 Conjecture: a(n) = 4*n + pa(n mod 4), where pa(k) = 0,3,4,3 for k=0,1,2,3 respectively; lim_{n->infinity} a(n)/n = 4; a(n)/n >= 4; a(n+4) = a(n) + 16. - _Jerzy R Borysowicz_, Jan 16 2022
%t A072834 f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; F[8, q_]:= ( f[q^4, q^4]^7 + (2*q*f[q^8, q^24])^7 + 14*f[q^2, q^2]^2*f[q^4, q^4]^5 - 7*f[q^4, q^4]^3*f[q^2, q^2]^4)/8; cfs = CoefficientList[Series[F[6, q], {q, 0, 500}], q]; Take[Pick[Range[Length[cfs]] - 1, Sign[Abs[cfs]], 1], 50] (* _G. C. Greubel_, Apr 16 2018 *)
%Y A072834 Cf. A023919.
%K A072834 nonn
%O A072834 0,2
%A A072834 _N. J. A. Sloane_, Jul 25 2002
%E A072834 Terms a(25) onward added by _G. C. Greubel_, Apr 16 2018