This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072863 #35 Feb 06 2022 21:16:43 %S A072863 1,3,9,26,72,192,496,1248,3072,7424,17664,41472,96256,221184,503808, %T A072863 1138688,2555904,5701632,12648448,27918336,61341696,134217728, %U A072863 292552704,635437056,1375731712,2969567232,6392119296,13723762688 %N A072863 a(n) = 2^(n-3)*(n^2+3*n+8). %C A072863 Binomial transform of 1+n*(n+1)/2, A000124. %C A072863 Number of 123-avoiding ternary words of length n-1. %C A072863 Row sums of triangle A134247. Also double binomial transform of (1, 1, 1, 0, 0, 0, ...). - _Gary W. Adamson_, Oct 15 2007 %C A072863 Equals row sums of triangle A144333. - _Gary W. Adamson_, Sep 18 2008 %H A072863 P. Braendeen and T. Mansour, <a href="http://arXiv.org/abs/math.CO/0309269">Finite automata and pattern avoidance in words</a> %H A072863 Tosic R., Masulovic D., Stojmenovic I., Brunvoll J., Cyvin B. N. and Cyvin S. J., <a href="http://dx.doi.org/10.1021/ci00024a002">Enumeration of polyhex hydrocarbons to h = 17</a>, J. Chem. Inf. Comput. Sci., 1995, 35, 181-187, Table 1, with an error at h=16. %H A072863 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-12,8). %F A072863 From _Paul Barry_, Jul 22 2004: (Start) %F A072863 G.f.: (1-3x+3x^2)/(1-2x)^3; %F A072863 a(n) = 2^(n-3)*(n^2+3n+8). (End) %F A072863 From _Paul Barry_, Mar 27 2007: (Start) %F A072863 E.g.f.: e^(2*x)*(1+x+x^2/2); %F A072863 a(n) = Sum_{k=0..2} binomial(n,k)*2^(n-k). (End) %F A072863 a(n-1) + A001788(n-2) = A104270(n). - _R. J. Mathar_, May 21 2018 %p A072863 A072863 := proc(n) %p A072863 2^(n-3)*(n^2+3*n+8) ; %p A072863 end proc: # _R. J. Mathar_, May 21 2018 %t A072863 Table[Sum[Binomial[m-1, k](#^2/2 -#/2 +1 &)[k+1], {k, 0, m}], {m, 36}] %t A072863 LinearRecurrence[{6,-12,8},{1,3,9},30] (* _Harvey P. Dale_, May 15 2019 *) %o A072863 (PARI) a(n)=2^(n-3)*(n^2+3*n+8); \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A072863 Cf. A134247, A000124, A144333. %K A072863 nonn,easy %O A072863 0,2 %A A072863 Michael A. Childers (childers_moof(AT)yahoo.com), Jul 27 2002 %E A072863 Corrected and extended by _Wouter Meeussen_, Jul 30 2002 %E A072863 Title and offset corrected. - _R. J. Mathar_, May 21 2018 %E A072863 New name using explicit formula. - _Joerg Arndt_, May 21 2018