This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072929 #24 Aug 20 2022 12:13:21 %S A072929 2,8,22,78,254,952,3434,12948,48642,185016,705434,2705178,10400602, %T A072929 40120040,155117794,601093338,2333606222,9075184872,35345263802, %U A072929 137846713906,538257877894,2104099669160,8233430727602,32247606401148 %N A072929 a(n) = Sum_{d dividing n} binomial(2d,d). %H A072929 Seiichi Manyama, <a href="/A072929/b072929.txt">Table of n, a(n) for n = 1..1664</a> %F A072929 G.f.: Sum_{k>=1} C(2k, k)*x^k/(1-x^k). - _Benoit Cloitre_, Apr 21 2003 %F A072929 L.g.f.: -log(Product_{k>=1} (1 - x^k)^(binomial(2*k,k)/k)) = Sum_{n>=1} a(n)*x^n/n. - _Ilya Gutkovskiy_, May 20 2018 %F A072929 a(n) ~ 4^n / sqrt(Pi*n). - _Vaclav Kotesovec_, May 21 2018 %F A072929 a(n) = Sum_{k=1..n} C(2*gcd(n,k),gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} C(2*n/gcd(n,k),n/gcd(n,k))/phi(n/gcd(n,k)) where phi = A000010. - _Richard L. Ollerton_, May 19 2021 %t A072929 Table[Total[Binomial[2#,#]&/@Divisors[n]],{n,30}] (* _Harvey P. Dale_, Aug 20 2022 *) %o A072929 (PARI) a(n)=sumdiv(n,d,binomial(2*d,d)) %Y A072929 Cf. A000984. %Y A072929 Cf. A000010. %K A072929 easy,nonn %O A072929 1,1 %A A072929 _Benoit Cloitre_, Aug 13 2002