This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072955 #8 Aug 19 2022 13:52:28 %S A072955 1,2,5,8,9,10,11,12,15,18,19,20,21,22,25,28,29,50,51,52,55,58,59,80, %T A072955 81,82,85,88,89,90,91,92,95,98,99,1000000,1000001,1000002,1000005, %U A072955 1000008,1000009,1000010,1000011,1000012,1000015,1000018,1000019,1000020 %N A072955 Suburban numbers: without b, r, s or u. %D A072955 M. J. Halm, Sequences (Re)discovered, Mpossibilities 81 (Aug. 2002). %H A072955 Michael S. Branicky, <a href="/A072955/b072955.txt">Table of n, a(n) for n = 1..10000</a> %H A072955 Michael Halm, <a href="http://michaelhalm.tripod.com/id109.htm">Sequences (Re)discovered</a>. %o A072955 (Python) %o A072955 from num2words import num2words %o A072955 from itertools import islice, product %o A072955 def ok(n): return set(num2words(n)) & {"b", "r", "s", "u"} == set() %o A072955 def agen(): # generator of terms < 10**304 %o A072955 base, pows = [k for k in range(1, 1000) if ok(k)], [1] %o A072955 yield from ([0] if ok(0) else []) + base %o A072955 for e in range(3, 304, 3): %o A072955 if set(num2words(10**e)[4:]) & {"b", "r", "s", "u"} == set(): %o A072955 pows = [10**e] + pows %o A072955 for t in product([0] + base, repeat=len(pows)): %o A072955 if t[0] == 0: continue %o A072955 yield sum(t[i]*pows[i] for i in range(len(t))) %o A072955 print(list(islice(agen(), 66))) # _Michael S. Branicky_, Aug 19 2022 %Y A072955 Cf. A089590, A072956, A072957. %K A072955 easy,nonn,word %O A072955 1,2 %A A072955 _Michael Joseph Halm_, Aug 13 2002