cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072957 Urban numbers: without 'r' or 'u'.

Original entry on oeis.org

1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 75, 76, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 1000000, 1000001, 1000002
Offset: 1

Views

Author

Michael Joseph Halm, Aug 13 2002

Keywords

References

  • M. J. Halm, Sequences (Re)discovered, Mpossibilities 81 (Aug. 2002).

Crossrefs

Cf. A006933 (eban numbers: without 'e'), A008521 (without 'o'), A008523 (without 't'), A008537 (without 'n'), A089590 (without 'u'), A072956 (turban numbers: without r, t or u), A089589 (without 'i').

Programs

  • PARI
    is(n)=!setintersect(Set(Vec(English(n))),["r","u"]) \\ See A052360 for English(). - M. F. Hasler, Apr 01 2019
    /* Alternate code, not using English(): (valid for 1 <= n < one trillion, which should be forbidden due to the 'r' but returns 1) */
    is(n)={setintersect( Set(digits(n)), [3,4]) && return; !while(n=divrem(n,10^6), n[2]<100||return; n=n[1])} \\ M. F. Hasler, Apr 01 2019
    
  • Python
    from num2words import num2words
    from itertools import islice, product
    def ok(n): return set(num2words(n)) & {"r", "u"} == set()
    def agen(): # generator of terms < 10**304
        base, pows = [k for k in range(1, 1000) if ok(k)], [1]
        yield from ([0] if ok(0) else []) + base
        for e in range(3, 304, 3):
            if set(num2words(10**e)[4:]) & {"r", "u"} == set():
                pows = [10**e] + pows
                for t in product([0] + base, repeat=len(pows)):
                    if t[0] == 0: continue
                    yield sum(t[i]*pows[i] for i in range(len(t)))
    print(list(islice(agen(), 66))) # Michael S. Branicky, Aug 19 2022

Extensions

Missing term 52 inserted by Michael S. Branicky, Aug 19 2022