cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072962 Unsigned reduced Euler characteristic for the matroid complex of cycle matroid for complete bipartite graph K_{n,n}.

This page as a plain text file.
%I A072962 #13 Nov 09 2024 06:38:58
%S A072962 1,20,1071,107104,17201225,4053135456,1318104508735,565989104282624,
%T A072962 310299479406324369,211554189796535488000,175592153482084893991151,
%U A072962 174356954302176729972264960,204111110614488911169799727641,278218647289052493421682954399744
%N A072962 Unsigned reduced Euler characteristic for the matroid complex of cycle matroid for complete bipartite graph K_{n,n}.
%C A072962 We will denote this number by a(n,n). It is also the value of the Tutte polynomial T_{G}(0,1) for G=K_{n,n}.
%C A072962 The formula given for a(s,t) is valid for all s>1 and t>0. Also note that a(s,t) = a(t,s) because K_{s,t} = K_{t,s}. For small values of s we have the following formulas: a(2,t)=t-1, a(3,t)=2^{t-2}(t-1)(3t-4), a(4,t)=3^{t-3}(t-1)(16t^2-41t+27), a(5,t)=4^{t-4}(t-1)(125t^3-376t^2+378t-133)
%D A072962 I. Novik, A. Postnikov and B. Sturmfels: Syzygies of oriented matroids, Duke Math. J. 111 (2002), no. 2, 287-317.
%H A072962 Woong Kook and Kang-Ju Lee, <a href="https://doi.org/10.1016/j.ejc.2018.04.001">Möbius coinvariants and bipartite edge-rooted forests</a>, European Journal of Combinatorics, Volume 71, June 2018, Pages 180-193.
%H A072962 I. Novik, A. Postnikov and B. Sturmfels, <a href="https://arxiv.org/abs/math/0009241">Syzygies of oriented matroids</a>, arXiv:math/0009241 [math.CO], 2000.
%F A072962 a(n) = a(n, n) where a(s, t) = Sum_{i=0..s-2} (-1)^i * binomial(s-1,i) * w(s-1-i, t), where s,t>1 and an e.g.f. for w(a, b) is given by exp( Sum_{i,j>0} i^(j-1) * j^(i-1) * (j-1) * x^i * y^j / (i! * j!) ).
%e A072962 a(2,2)=1. Since K_{2,2} is a cycle with four edges, the matroid complex of cycle matroid for K_{2,2} is the 2-skeleton of standard 3-simplex. Therefore the unsigned reduced Euler characteristic for this complex is |-1+4-6+4|=1
%Y A072962 Cf. A057817.
%K A072962 nonn
%O A072962 2,2
%A A072962 W. Kook and L. Thoma (andrewk(AT)math.uri.edu), Aug 20 2002
%E A072962 More terms from _Sean A. Irvine_, Nov 08 2024