This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072978 #39 May 15 2025 00:49:55 %S A072978 1,6,10,14,22,26,34,36,38,46,58,60,62,74,82,84,86,94,100,106,118,122, %T A072978 132,134,140,142,146,156,158,166,178,194,196,202,204,206,214,216,218, %U A072978 220,226,228,254,260,262,274,276,278,298,302,308,314,326,334,340,346 %N A072978 Numbers of the form m*2^Omega(m), where m>1 is odd and Omega(m)=A001222(m), the number of prime factors of m. %C A072978 (number of odd prime factors) = (number of even prime factors). %C A072978 A000400, A011557, A001023, A001024, A009965, A009966 and A009975 are subsequences. - _Reinhard Zumkeller_, Jan 06 2008 %C A072978 Subsequence of A028260. - _Reinhard Zumkeller_, Sep 20 2008 %H A072978 Reinhard Zumkeller, <a href="/A072978/b072978.txt">Table of n, a(n) for n = 1..10000</a> %F A072978 A007814(a(n)) = A087436(a(n)). - _Reinhard Zumkeller_, Jan 06 2008 %t A072978 Join[{1}, Select[Range[2, 500, 2], First[#] == Total[Rest[#]] & [FactorInteger[#][[All, 2]]] &]] (* _Paolo Xausa_, Feb 19 2025 *) %o A072978 (Python) %o A072978 from math import prod, isqrt %o A072978 from sympy import primerange, integer_nthroot, primepi %o A072978 def A072978(n): %o A072978 def bisection(f,kmin=0,kmax=1): %o A072978 while f(kmax) > kmax: kmax <<= 1 %o A072978 kmin = kmax >> 1 %o A072978 while kmax-kmin > 1: %o A072978 kmid = kmax+kmin>>1 %o A072978 if f(kmid) <= kmid: %o A072978 kmax = kmid %o A072978 else: %o A072978 kmin = kmid %o A072978 return kmax %o A072978 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A072978 def h(x,n): return sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,3,1,n)) %o A072978 def f(x): return int(n+x-primepi(x>>1)-sum(h(x>>m,m) for m in range(2,x.bit_length()+1))) if x>1 else 1 %o A072978 return bisection(f,n,n) # _Chai Wah Wu_, Apr 10 2025 %o A072978 (PARI) isok(k) = {my(v = valuation(k, 2)); bigomega(k >> v) == v;} \\ _Amiram Eldar_, May 15 2025 %Y A072978 Cf. A001222, A007814, A087436. %Y A072978 Cf. A000400, A011557, A001023, A001024, A009965, A009966, A009975, A028260. %K A072978 nonn,nice %O A072978 1,2 %A A072978 _Reinhard Zumkeller_, Aug 20 2002