This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A072985 #39 Sep 08 2022 08:45:06 %S A072985 1,2,7,6,21,18,63,54,189,162,567,486,1701,1458,5103,4374,15309,13122, %T A072985 45927,39366,137781,118098,413343,354294,1240029,1062882,3720087, %U A072985 3188646,11160261,9565938,33480783,28697814,100442349,86093442 %N A072985 Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n >= 2, nu(n) = b*nu(n-1) + lambda*(n-1)_q*nu(n-2) with (b,lambda)=(2,3), where (n)_q = (1+q+...+q^(n-1)) and q is a root of unity. %C A072985 Instead of listing the coefficients of the highest power of q in each nu(n), if we list the coefficients of the smallest power of q (i.e., constant terms), we get a sequence of weighted Fibonacci numbers described by f(0)=1, f(1)=1, for n >= 2, f(n) = 2*f(n-1) + 3*f(n-2). %H A072985 Vincenzo Librandi, <a href="/A072985/b072985.txt">Table of n, a(n) for n = 0..1000</a> %H A072985 M. Beattie, S. Dăscălescu and S. Raianu, <a href="https://arxiv.org/abs/math/0204075">Lifting of Nichols Algebras of Type B_2</a>, arXiv:math/0204075 [math.QA], 2002. %H A072985 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,3). %F A072985 For given b and lambda, the recurrence relation is given by; t(0)=1, t(1)=b, t(2) = b^2+lambda and for n >= 3, t(n) = lambda*t(n-2). %F A072985 G.f.: (1 + 2*x + 4*x^2)/(1-3*x^2). - _R. J. Mathar_, Dec 05 2007 %F A072985 a(n) = 3*a(n-2) for n>2. - _Ralf Stephan_, Jul 19 2013 %F A072985 a(n) = (1/6)*(13 + (-1)^n)*3^floor(n/2) for n>0. - _Ralf Stephan_, Jul 19 2013 %e A072985 nu(0) = 1; %e A072985 nu(1) = 2; %e A072985 nu(2) = 7; %e A072985 nu(3) = 20 + 6q; %e A072985 nu(4) = 61 + 33q + 21q^2; %e A072985 nu(5) = 182 + 144q + 120q^2 + 78q^3 + 18q^4; %e A072985 nu(6) = 547 + 570q + 585q^2 + 501q^3 + 381q^4 + 162q^5 + 63q^6; ... %e A072985 The coefficients of the highest power of q give this sequence. %t A072985 CoefficientList[Series[-(1 + 2 x + 4 x^2) / (-1 + 3 x^2), {x, 0, 40}], x] (* _Vincenzo Librandi_, Jul 20 2013 *) %t A072985 Join[{1}, LinearRecurrence[{0, 3}, {2, 7}, 33]] (* _Jean-François Alcover_, Sep 23 2017 *) %o A072985 (Magma) [1] cat [(1/6)*(13+(-1)^n)*3^Floor(n/2): n in [1..40]]; // _Vincenzo Librandi_, Jul 20 2013 %o A072985 (PARI) x='x+O('x^30); Vec((1+2*x+4*x^2)/(1-3*x^2)) \\ _G. C. Greubel_, May 26 2018 %Y A072985 Cf. A014983. %K A072985 nonn,easy %O A072985 0,2 %A A072985 Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002 %E A072985 More terms from _R. J. Mathar_, Dec 05 2007