cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073011 Decimal expansion of Lehmer's constant (also known as the Salem constant).

This page as a plain text file.
%I A073011 #50 Feb 16 2025 08:32:46
%S A073011 1,1,7,6,2,8,0,8,1,8,2,5,9,9,1,7,5,0,6,5,4,4,0,7,0,3,3,8,4,7,4,0,3,5,
%T A073011 0,5,0,6,9,3,4,1,5,8,0,6,5,6,4,6,9,5,2,5,9,8,3,0,1,0,6,3,4,7,0,2,9,6,
%U A073011 8,8,3,7,6,5,4,8,5,4,9,9,6,2,0,9,6,8,3,0,1,1,5,5,8,1,8,1,5,3,9,4,6,5,9,2,0
%N A073011 Decimal expansion of Lehmer's constant (also known as the Salem constant).
%C A073011 This number is algebraic of degree 10.
%C A073011 The Salem constant given here is the smallest known value of Mahler's measure M(f)=abs(a_d)*Product_{k=1..d}max(1,abs(b_k)) of a polynomial f(x)=Sum_{k=0..d}(a_k*x^k)=a_d*Product_{k=1..d}(x-b_k). The minimum occurs for Lehmer's polynomial (coefficients A070178) L(x)=x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1 with M(L)=1.1762808... - _Hugo Pfoertner_, Mar 12 2006
%C A073011 The Salem numbers were named after the Greek mathematician Raphaël Salem (1898-1963). - _Amiram Eldar_, May 01 2021
%D A073011 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.30, p. 193.
%H A073011 G. C. Greubel, <a href="/A073011/b073011.txt">Table of n, a(n) for n = 1..5000</a>
%H A073011 David Boyd, <a href="https://dx.doi.org/10.1215/S0012-7094-77-04413-1">Small Salem numbers</a>, Duke Math. Journal, vol. 44, 1977, pp. 315-328.
%H A073011 Henri Cohen, Leonard Lewin, and Don Zagier. <a href="http://projecteuclid.org/euclid.em/1048709113">A sixteenth-order polylogarithm ladder</a>, Experimental Mathematics 1.1 (1992): 25-34.
%H A073011 Eriko Hironaka, <a href="http://www.math.fsu.edu/~aluffi/archive/paper355.pdf">What is Lehmer's number?</a>, Notices Amer. Math. Soc., 56 (No. 3, 2009), 374-375.
%H A073011 D. H. Lehmer, <a href="http://www.jstor.org/stable/1968172">Factorization of certain cyclotomic functions</a>, Annals of Math. vol. 34, 1933, pp. 461-479.
%H A073011 Douglas Lind, <a href="https://arxiv.org/abs/math/0303279">Lehmer's Problem for compact abelian groups</a>, arXiv:math/0303279 [math.NT], 2003-2014.
%H A073011 Michael Mossinghoff, <a href="https://web.archive.org/web/20131027202648/http://oldweb.cecm.sfu.ca/~mjm/Lehmer/">Lehmer's Problem Website</a>.
%H A073011 Michael Mossinghoff, <a href="https://web.archive.org/web/20210223153647/http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html">Small Salem Numbers</a>.
%H A073011 Simon Plouffe, <a href="http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap81.html">Salem Constant</a>.
%H A073011 Raphaël Salem, <a href="http://doi.org/10.1215/S0012-7094-45-01213-0">Power series with integral coefficients</a>, Duke mathematical journal, Vol. 12, No. 1 (1945), pp. 153-172.
%H A073011 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SalemConstants.html">Salem Constants</a>.
%H A073011 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Polylogarithm.html">Polylogarithm</a>.
%H A073011 <a href="/index/Al#algebraic_10">Index entries for algebraic numbers, degree 10</a>
%F A073011 This is the largest real root of the polynomial x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1.
%e A073011 1.17628081825991750654407033847403505069341580656469...
%t A073011 RealDigits[x/.FindRoot[x^10+x^9-Total[x^Range[3,7]]+x+1==0,{x,1,2}, WorkingPrecision->120]][[1]] (* _Harvey P. Dale_, Sep 08 2011 *)
%t A073011 Root[ x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1, 2] // RealDigits[#, 10, 105]& // First (* _Jean-François Alcover_, Mar 05 2013 *)
%o A073011 (PARI) default(realprecision,250); L(x)=x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1; solve(x=1.1,1.2,L(x))
%o A073011 (PARI) polrootsreal(Pol([1, 1, 0, -1, -1, -1, -1, -1, 0, 1, 1]))[2] \\ _Charles R Greathouse IV_, Sep 03 2014
%Y A073011 Cf. A070178 (Coefficients of Lehmer's polynomial).
%K A073011 cons,nonn
%O A073011 1,3
%A A073011 _Robert G. Wilson v_, Aug 03 2002
%E A073011 Edited by _N. J. A. Sloane_, May 01 2012