cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073020 Triangle of T(n,m) = number of bracelets (necklaces than can be turned over) with m white beads and (2n-m) black ones, for 1<=m<=n.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 5, 8, 1, 5, 8, 16, 16, 1, 6, 12, 29, 38, 50, 1, 7, 16, 47, 79, 126, 133, 1, 8, 21, 72, 147, 280, 375, 440, 1, 9, 27, 104, 252, 561, 912, 1282, 1387, 1, 10, 33, 145, 406, 1032, 1980, 3260, 4262, 4752, 1, 11, 40, 195, 621, 1782, 3936, 7440, 11410
Offset: 1

Views

Author

Wouter Meeussen, Aug 03 2002

Keywords

Comments

Left half of even rows of table A052307 with left column deleted.

Examples

			1; 1,2; 1,3,3; 1,4,5,8; 1,5,8,16,16; ...
		

Crossrefs

Cf. A052307, A047996, A072506, A005648. Cf. A078925 for odd number of beads. Last term in each row gives A005648.

Programs

  • Mathematica
    Table[Length[ Union[Last[Sort[Flatten[Table[{RotateLeft[ #, i], Reverse[RotateLeft[ #, i]]}, {i, 2k}], 1]]]& /@ Permutations[IntegerDigits[2^(2k-j) (2^j-1), 2]]] ], {k, 9}, {j, k}]
    Table[( -(-1)^n If[EvenQ[m+n], 0, Binomial[n-1, Floor[(m-2)/2]] ]/2 + Fold[ #1+EulerPhi[ #2]Binomial[2n/#2, m/#2]/(2n)&, Binomial[2Floor[n/2], Floor[m/2]], Intersection[Divisors[2n], Divisors[m]]]/2), {n, 9}, {m, n}]
    Table[ f[k, 2n], {n, 11}, {k, n}] // Flatten (* Robert G. Wilson v, Mar 29 2006 *)

Formula

(1/2)*(C(2*(n\2), m\2) +Sum (d|(2n, m) phi(d)C(2n/d, m/d) ) - (-1)^n if(even(n+m), 0, C(n-1, floor(m/2-1/2) ).