This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073031 #21 Jan 25 2025 09:13:42 %S A073031 1,1,2,3,5,9,15,26,44,75,129,220,377,644,1101,1883,3219,5505,9412, %T A073031 16093,27517,47049,80448,137553,235195,402148,687611,1175712,2010288, %U A073031 3437288,5877241,10049189,17182590,29379620,50234693,85893702 %N A073031 Number of ways of making change for n cents using coins of sizes 1, 2, 5, 10 cents, when order matters. %D A073031 Peter Boros (borospet(AT)freemail.hu): Lectures on Fibonacci's World at the SOTERIA Foundation, 1999. %D A073031 P. Henrici, Applied and Computational Complex Analysis. Wiley, NY, 3 vols., 1974-1986. (Vol. 1, p. 580.) %H A073031 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,1,0,0,0,0,1). %F A073031 a(n) = a(n-1) + a(n-2) + a(n-5) + a(n-10), a(0)=1. %F A073031 G.f.: 1/(1 - x - x^2 - x^5 - x^10). - _Franklin T. Adams-Watters_, Oct 24 2006 %F A073031 With offset 1, the INVERT transform of (1 + x + x^4 + x^9). - _Gary W. Adamson_, Apr 04 2017 %e A073031 a(4)=5 because 4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 = 2 + 2: five possible exchange. a(15) = a(14) + a(13) + a(10) + a(5) = 1883 = 1101 + 644 + 129 + 9. %p A073031 a:= n-> (Matrix(10, (i,j)-> if i+1=j or j=1 and member (i,[1, 2, 5, 10]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..35); # _Alois P. Heinz_, Oct 07 2008 %t A073031 LinearRecurrence[{1, 1, 0, 0, 1, 0, 0, 0, 0, 1}, {1, 1, 2, 3, 5, 9, 15, 26, 44, 75}, 36] (* _Jean-François Alcover_, Jan 25 2025 *) %Y A073031 Cf. A079971. %K A073031 easy,nonn %O A073031 0,3 %A A073031 _Miklos Kristof_, Aug 22 2002