cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073039 First multiple of n in A025487.

This page as a plain text file.
%I A073039 #11 Dec 30 2020 08:23:13
%S A073039 1,2,6,4,30,6,210,8,36,30,2310,12,30030,210,30,16,510510,36,9699690,
%T A073039 60,210,2310,223092870,24,900,30030,216,420,6469693230,30,
%U A073039 200560490130,32,2310,510510,210,36,7420738134810,9699690,30030,120,304250263527210
%N A073039 First multiple of n in A025487.
%H A073039 Amiram Eldar, <a href="/A073039/b073039.txt">Table of n, a(n) for n = 1..2370</a>
%F A073039 If n = 2^e_1 * 3^e_2 * ... * prime(k)^e_k, then a(n) = 2^max(e_1, e_2, ..., e_k) * 3^max(e_2, ..., e_k) * ... * prime(k-1)^max(e_{k-1}, e_k) * prime(k)^e_k = lcm_{i=1}^k prime(k)#^e_k. In particular, if p prime, a(p) = p# (primorial, A002110). When gcd(n,m) = 1, a(n*m) = lcm(a(n), a(m)). Also, a(n^k) = a(n)^k. - _Franklin T. Adams-Watters_, Oct 24 2006
%t A073039 prim[p_] := Product[Prime[i], {i, PrimePi[p]}]; a[n_] := Module[{f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]]; LCM @@ ((prim /@ p)^e)]; Array[a, 50] (* _Amiram Eldar_, Dec 30 2020 *)
%Y A073039 Cf. A002110, A025487.
%K A073039 nonn
%O A073039 1,2
%A A073039 _Jeff Burch_, Aug 22 2002