A073134 Table by antidiagonals of T(n,k)=n*T(n,k-1)-T(n,k-2) starting with T(n,1)=1.
1, 1, 1, 0, 2, 1, -1, 3, 3, 1, -1, 4, 8, 4, 1, 0, 5, 21, 15, 5, 1, 1, 6, 55, 56, 24, 6, 1, 1, 7, 144, 209, 115, 35, 7, 1, 0, 8, 377, 780, 551, 204, 48, 8, 1, -1, 9, 987, 2911, 2640, 1189, 329, 63, 9, 1, -1, 10, 2584, 10864, 12649, 6930, 2255, 496, 80, 10, 1, 0, 11, 6765, 40545, 60605, 40391, 15456, 3905, 711, 99, 11, 1, 1, 12
Offset: 1
Examples
Rows start: 1, 1, 0, -1, -1, 0, 1, ...; 1, 2, 3, 4, 5, 6, 7, ...; 1, 3, 8, 21, 55, 144, 377, ...; 1, 4, 15, 56, 209, 780, 2911, ...; ...
Links
- Shmuel T. Klein, Combinatorial Representation of Generalized Fibonacci Numbers, Fib. Quarterly 29 (2) (1991) 124-131, variable U_n^m. [From _R. J. Mathar_, Feb 19 2010]
Crossrefs
Programs
-
PARI
T(n,k) = sum(j=0,k-1,A049310(k-1,j)*n^j) \\ Jason Yuen, Aug 20 2024