This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073179 #14 Apr 23 2014 02:28:07 %S A073179 1,1,5,64,1417,47801,2278981,145735360,12026529089,1243307884537, %T A073179 157278532956301,23885127975415136,4286460830620175065, %U A073179 897058398619374567889,216462065577670278012557 %N A073179 a(n) = n!^2 times coefficient of x^n in Sum_{k>=0} x^k/k!^2/4^k*((2-x)/(1-x))^(2*k). %D A073179 R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.65(b). %H A073179 Vincenzo Librandi, <a href="/A073179/b073179.txt">Table of n, a(n) for n = 0..200</a> %F A073179 Sum_{k>=0} x^k/k!^2/4^k*((2-x)/(1-x))^(2*k) = Sum_{n>=0} a(n)*x^n/n!^2. - _Vladeta Jovovic_, Aug 01 2006 %F A073179 BesselI(0,(2-x)/(1-x)*sqrt(x)) = Sum_{n>=0} a(n)*x^n/n!^2. - _Vladeta Jovovic_, Jun 20 2007 %t A073179 CoefficientList[Series[BesselI[0,(2-x)/(1-x)*Sqrt[x]], {x, 0, 20}], x] * Range[0, 20]!^2 (* _Vaclav Kotesovec_, Apr 21 2014 *) %o A073179 (PARI) {a(n)=if(n<0, 0, n!^2*polcoeff(sum(k=0, n, x^k/k!^2/4^k* ((2-x)/(1-x))^(2*k), x*O(x^n)), n))} %Y A073179 Cf. A049088. %K A073179 nonn %O A073179 0,3 %A A073179 _Michael Somos_, Jul 19 2002