cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073190 Number of general plane trees which are either empty (the case a(0)), or whose root degree is either 1 (i.e., the planted trees) or the two leftmost subtrees (of the root node) are identical.

This page as a plain text file.
%I A073190 #13 May 30 2018 13:52:11
%S A073190 1,1,2,3,8,20,60,181,584,1916,6476,22210,77416,272840,971640,3488925,
%T A073190 12621168,45946156,168206604,618853270,2286974856,8485246456,
%U A073190 31596023208,118037654258,442287721872,1661790513944,6259494791096
%N A073190 Number of general plane trees which are either empty (the case a(0)), or whose root degree is either 1 (i.e., the planted trees) or the two leftmost subtrees (of the root node) are identical.
%C A073190 The Catalan bijection A072796 fixes only these kinds of trees, so this occurs in the table A073202 as row 1.
%H A073190 G. C. Greubel, <a href="/A073190/b073190.txt">Table of n, a(n) for n = 0..1000</a>
%F A073190 a(0)=1, a(n) = Cat(n-1) + Sum_{i=0..n-2, (n-i) is even} Cat((n-i-2)/2)*Cat(i), where Cat(n) is A000108(n).
%p A073190 A073190 := proc(n) local d; Cat(n-1)+ add( (`mod`((n-d+1),2))*Cat((n-d-2)/2)*Cat(d), d=0..n-2); end;
%p A073190 Cat := n -> binomial(2*n,n)/(n+1);
%t A073190 a[n_] := CatalanNumber[n - 1] + Sum[Mod[n - d + 1, 2]*CatalanNumber[(n - d - 2)/2]*CatalanNumber[d], {d, 0, n - 2}]; a[0] = 1; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Mar 06 2016 *)
%o A073190 (PARI) Cat(n) = binomial(2*n,n)/(n+1);
%o A073190 a(n) = if (n==0, 1, Cat(n-1) + sum(i=0, n-2, if (!((n-i)%2), Cat((n-i-2)/2)*Cat(i)))); \\ _Michel Marcus_, May 30 2018
%Y A073190 Occurs for first time in A073202 as row 1. A073191(n) = (A000108(n)+A073190(n))/2. Cf. also A073192.
%K A073190 nonn
%O A073190 0,3
%A A073190 _Antti Karttunen_, Jun 25 2002