cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073216 The terms of A055235 (sums of two powers of 3) divided by 2.

This page as a plain text file.
%I A073216 #27 Apr 08 2025 17:40:23
%S A073216 1,2,3,5,6,9,14,15,18,27,41,42,45,54,81,122,123,126,135,162,243,365,
%T A073216 366,369,378,405,486,729,1094,1095,1098,1107,1134,1215,1458,2187,3281,
%U A073216 3282,3285,3294,3321,3402,3645,4374,6561,9842,9843,9846,9855,9882,9963,10206,10935,13122,19683
%N A073216 The terms of A055235 (sums of two powers of 3) divided by 2.
%C A073216 n such that 3 is the largest power of 3 dividing binomial(3n,n). - _Benoit Cloitre_, Jan 01 2004
%C A073216 Equals A023745 + 1.
%C A073216 This sequence is A007051 together with its (successive) multiples by (powers of) 3. - _R. K. Guy_, Oct 08 2011
%H A073216 C. Armana, <a href="https://doi.org/10.1016/j.jnt.2011.02.011">Coefficients of Drinfeld modular forms and Hecke operators</a>, Journal of Number Theory 131 (2011), 1435-1460.
%F A073216 T(n,m) = (3^n + 3^m) / 2, n = 0, 1, 2, 3 ..., m = 0, 1, 2, 3, ... n.
%e A073216 T(2,0) = 5 = (3^2 + 3^0) / 2.
%e A073216 Triangle begins:
%e A073216      1;
%e A073216      2,    3;
%e A073216      5,    6,    9;
%e A073216     14,   15,   18,   27;
%e A073216     41,   42,   45,   54,   81;
%e A073216    122,  123,  126,  135,  162,  243;
%e A073216    365,  366,  369,  378,  405,  486,  729;
%e A073216   1094, 1095, 1098, 1107, 1134, 1215, 1458, 2187;
%e A073216   ...
%o A073216 (Python)
%o A073216 from math import isqrt
%o A073216 def A073216(n): return 3**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+3**(n-1-(a*(a+1)>>1))>>1 # _Chai Wah Wu_, Apr 08 2025
%Y A073216 Cf. A000244 (main diagonal), A055235, A007051 (first column), A023745.
%Y A073216 T(2n,n) gives A025551.
%K A073216 nonn,tabl,easy
%O A073216 0,2
%A A073216 _Jeremy Gardiner_, Jul 21 2002
%E A073216 Edited by _Jeremy Gardiner_, Oct 08 2011
%E A073216 Offset changed by _Alois P. Heinz_, Apr 08 2025