cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073265 Table T(n,k) (listed antidiagonalwise in order T(1,1), T(2,1), T(1,2), T(3,1), T(2,2), ...) giving the number of compositions (ordered partitions) of n into exactly k powers of 2.

This page as a plain text file.
%I A073265 #21 Jun 27 2021 07:53:06
%S A073265 1,1,0,0,1,0,1,2,0,0,0,1,1,0,0,0,2,3,0,0,0,0,2,3,1,0,0,0,1,0,4,4,0,0,
%T A073265 0,0,0,1,6,6,1,0,0,0,0,0,2,3,8,5,0,0,0,0,0,0,2,3,13,10,1,0,0,0,0,0,0,
%U A073265 0,6,12,15,6,0,0,0,0,0,0,0,2,6,10,25,15,1,0,0,0,0,0,0,0,0,4,16,31,26,7,0,0,0,0,0,0,0
%N A073265 Table T(n,k) (listed antidiagonalwise in order T(1,1), T(2,1), T(1,2), T(3,1), T(2,2), ...) giving the number of compositions (ordered partitions) of n into exactly k powers of 2.
%H A073265 Alois P. Heinz, <a href="/A073265/b073265.txt">Antidiagonals n = 1..141, flattened</a>
%H A073265 S. Lehr, J. Shallit and J. Tromp, <a href="https://doi.org/10.1016/0304-3975(95)00234-0">On the vector space of the automatic reals</a>, Theoret. Comput. Sci. 163 (1996), no. 1-2, 193-210.
%F A073265 T(0, k) = T(n, 0) = 0, T(n, k) = 0 if k > n, T(n, 1) = 1 if n = 2^m, 0 otherwise and in other cases T(n, k) = Sum_{i=0..floor(log_2(n-1))} T(n-(2^i), k-1).
%F A073265 T(n, k) is the coefficient of x^n in the formal power series (x + x^2 + x^4 + x^8 + x^16 + ...)^k. - _Emeric Deutsch_, Feb 04 2005
%e A073265 T(6,3) = 4 because there are four ordered partitions of 6 into 3 powers of 2, namely: 4+1+1, 1+4+1, 1+1+4 and 2+2+2 and it is recursively computed from T(5,2)+T(4,2)+T(2,2) = 2+1+1.
%p A073265 T:= proc(n, k) option remember; `if`(k>n, 0,
%p A073265       `if`(n=k, 1, add(T(n-2^j, k-1), j=0..ilog2(n))))
%p A073265     end:
%p A073265 seq(seq(T(d-k+1, k), k=1..d), d=1..20);  # _Alois P. Heinz_, Mar 26 2014
%t A073265 T[n_, k_] := If[k>n, 0, SeriesCoefficient[Sum[x^(2^j), {j, 0, Log[2, n] // Ceiling} ]^k, {x, 0, n}]]; Table[T[n-k+1, k], {n, 1, 20}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Mar 06 2015, after _Emeric Deutsch_ *)
%Y A073265 The first row is equal to the characteristic function of A000079, i.e., A036987 with offset 1 instead of 0 and the second row is A073267. The column sums give A023359. A073266 gives the upper triangular region of this array.
%K A073265 nonn,tabl
%O A073265 1,8
%A A073265 _Antti Karttunen_, Jun 25 2002