cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073311 Number of squarefree numbers in the reduced residue system of n.

This page as a plain text file.
%I A073311 #42 Aug 20 2024 23:17:16
%S A073311 1,1,2,2,3,2,5,4,4,3,7,4,8,5,6,7,11,6,12,7,8,9,15,8,13,10,13,9,17,8,
%T A073311 19,13,13,13,15,11,23,15,17,14,26,11,28,17,18,18,30,15,26,17,21,19,32,
%U A073311 16,25,20,23,23,36,15,37,25,26,26,30,18,41,26,29,22,44,22,45,30,29,29,36
%N A073311 Number of squarefree numbers in the reduced residue system of n.
%C A073311 Number of positive squarefree numbers <= n that are relatively prime to n.
%H A073311 Reinhard Zumkeller, <a href="/A073311/b073311.txt">Table of n, a(n) for n = 1..10000</a>
%H A073311 Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/">Unitarism and infinitarism</a>.
%H A073311 Steven R. Finch, <a href="/A007947/a007947.pdf">Unitarism and Infinitarism</a>, February 25, 2004. [Cached copy, with permission of the author]
%H A073311 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 49-50.
%F A073311 a(n) + A073312(n) = A000010(n).
%F A073311 Let s(n) = Sum_{k=1..n} a(k). Then s(n) is asymptotic to C*n^2 where C = (3/Pi^2)*alpha and alpha = Product_{p prime} (1 - 1/(p*(p+1))) = A065463 = 0.7044422009... [From discussions in Number Theory List, Apr 06 2004]
%F A073311 A175046(n) = a(n)*A008966(n). - _Reinhard Zumkeller_, Apr 05 2010
%F A073311 a(n) = Sum_{k=1..A000010(n)} A008966(A038566(n,k)). - _Reinhard Zumkeller_, Jul 04 2012
%F A073311 a(n) = Sum_{i=1..n} mu(A007947(n)*i)^2, where mu is the Moebius function (A008683). - _Ridouane Oudra_, Jul 27 2019
%F A073311 a(n) = Sum_{1<=k<=n, gcd(n,k)=1} mu(k)^2. - _Ridouane Oudra_, May 25 2023
%e A073311 n=15, there are A000010(15)=8 residues: 1, 2, 4=2^2, 7, 8=2^3, 11, 13 and 14; six of them are squarefree: 1, 2, 7, 11, 13 and 14, therefore a(15)=6. [Typo fixed by _Reinhard Zumkeller_, Mar 19 2010]
%p A073311 with(numtheory): rad := n -> mul(p, p in factorset(n)):
%p A073311 seq(add(mobius(rad(n)*i)^2, i=1..n), n=1..100); # _Ridouane Oudra_, Jul 27 2019
%t A073311 a[n_] := Select[Range[n], SquareFreeQ[#] && CoprimeQ[#, n]&] // Length;
%t A073311 Array[a, 100] (* _Jean-François Alcover_, Dec 12 2021 *)
%o A073311 (Haskell)
%o A073311 a073311 = sum . map a008966 . a038566_row
%o A073311 -- _Reinhard Zumkeller_, Jul 04 2012
%o A073311 (PARI) a(n)=my(s=1); forfactored(k=2,n-1, if(vecmax(k[2][,2])==1 && gcd(k[1],n)==1, s++)); s \\ _Charles R Greathouse IV_, Nov 05 2017
%o A073311 (Magma) [&+[MoebiusMu(&*PrimeDivisors(k)*i)^2:i in [1..k]]: k in [1..65]]; // _Marius A. Burtea_, Jul 27 2019
%Y A073311 Cf. A073312, A005117, A000010, A048864, A048865, A065463.
%K A073311 nonn
%O A073311 1,3
%A A073311 _Reinhard Zumkeller_, Jul 25 2002