cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A073318 a(n) = 2^phi(n) - Sum_{j=0..n} binomial(phi(n), phi(j)).

Original entry on oeis.org

0, -1, -2, -3, -6, -4, -10, -13, -26, -14, -183, -15, -22, -57, -210, -211, -1730, -58, 25160, -240, -3356, -949, 238031, -241, -256823, -3918, -143243, -3919, 46326924, -242, 281620682, -61817, -639769, -61818, -4718174, -4415, 2023569890, -224436, -7556927, -63639, -43279525745, -4416
Offset: 1

Views

Author

Labos Elemer, Jul 26 2002

Keywords

Comments

a(n) > 0 for {19, 23, 29, 31, 37, 43, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}. Does this hold only for special primes?
No: composites for which a(n) > 0 include 121, 289, 437, 529, 667, 671, 697, 703, 713, 731, .... - Robert Israel, Jan 23 2021

Crossrefs

Programs

  • Mathematica
    g[x_] := EulerPhi[x] Table[Apply[Plus, Table[Binomial[g[n], g[j]], {j, 0, n}]], {n, 1, 50}]

Formula

a(n) = A066781(n) - A073317(n).

A073319 Numbers n such that A073318(n) = 2^phi(n) - Sum_{j=0..n} binomial(phi(n), phi(j)) is positive.

Original entry on oeis.org

19, 23, 29, 31, 37, 43, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293
Offset: 1

Views

Author

Labos Elemer, Jul 26 2002

Keywords

Examples

			Several values are composites: 121, 289, 437, 529, ..., 961, 989. Primes like 2, ..., 17, 41 are not here.
		

Crossrefs

Programs

  • Mathematica
    g[x_] := EulerPhi[x] Do[s=2^g[n]-Apply[Plus, Table[Binomial[g[n], g[j]], {j, 0, n}]]; If[Sign[s]==1&&!PrimeQ[n], k=k+1; Print[{k, n, PrimeQ[n]}]], {n, 1, 1000}]

Formula

Solutions to A066781(x) - A073317(x) > 0.
Showing 1-2 of 2 results.