This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073335 #16 May 06 2017 00:00:40 %S A073335 0,1,2,5,8,15,23,39,58,89,128,189,264,375,515,713,960,1301,1726,2298, %T A073335 3011,3948,5113,6625,8492,10880,13825,17545,22108,27823,34800,43465, %U A073335 54003,66983,82709,101960,125180,153432,187397,228490,277707,336972 %N A073335 Total number of prime power parts in all partitions of n. %H A073335 G. C. Greubel, <a href="/A073335/b073335.txt">Table of n, a(n) for n = 1..5000</a> %F A073335 a(n) = Sum_{k=1..n} bigomega(k)*numbpart(n-k). %F A073335 G.f.: Sum_{i>=2} floor(1/omega(i))*x^i/(1 - x^i) / Product_{j>=1} (1 - x^j), where omega() is the number of distinct prime factors (A001221). - _Ilya Gutkovskiy_, Jan 24 2017 %e A073335 a(4)=5 because in all partitions of 4 we have 5 powers of primes (shown between parentheses): (4), (3)1, (2)(2), (2)11, 1111. %p A073335 with(numtheory): with(combinat): a:= n-> add(bigomega(k)*numbpart(n-k), k=1..n): seq(a(n), n=1..46); # _Emeric Deutsch_, Feb 26 2005 %t A073335 Table[Sum[PrimeOmega[k]*PartitionsP[n - k], {k, 1, n}], {n, 1, 50}] (* _G. C. Greubel_, May 05 2017 *) %o A073335 (PARI) a(n) = sum(k=1, n, bigomega(k)*numbpart(n-k)); \\ _Michel Marcus_, May 05 2017 %Y A073335 Cf. A000041, A001222, A037032. %K A073335 easy,nonn %O A073335 1,3 %A A073335 _Vladeta Jovovic_, Aug 22 2002 %E A073335 More terms from _Emeric Deutsch_, Feb 26 2005