cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073335 Total number of prime power parts in all partitions of n.

This page as a plain text file.
%I A073335 #16 May 06 2017 00:00:40
%S A073335 0,1,2,5,8,15,23,39,58,89,128,189,264,375,515,713,960,1301,1726,2298,
%T A073335 3011,3948,5113,6625,8492,10880,13825,17545,22108,27823,34800,43465,
%U A073335 54003,66983,82709,101960,125180,153432,187397,228490,277707,336972
%N A073335 Total number of prime power parts in all partitions of n.
%H A073335 G. C. Greubel, <a href="/A073335/b073335.txt">Table of n, a(n) for n = 1..5000</a>
%F A073335 a(n) = Sum_{k=1..n} bigomega(k)*numbpart(n-k).
%F A073335 G.f.: Sum_{i>=2} floor(1/omega(i))*x^i/(1 - x^i) / Product_{j>=1} (1 - x^j), where omega() is the number of distinct prime factors (A001221). - _Ilya Gutkovskiy_, Jan 24 2017
%e A073335 a(4)=5 because in all partitions of 4 we have 5 powers of primes (shown between parentheses): (4), (3)1, (2)(2), (2)11, 1111.
%p A073335 with(numtheory): with(combinat): a:= n-> add(bigomega(k)*numbpart(n-k), k=1..n): seq(a(n), n=1..46); # _Emeric Deutsch_, Feb 26 2005
%t A073335 Table[Sum[PrimeOmega[k]*PartitionsP[n - k], {k, 1, n}], {n, 1, 50}] (* _G. C. Greubel_, May 05 2017 *)
%o A073335 (PARI) a(n) = sum(k=1, n, bigomega(k)*numbpart(n-k)); \\ _Michel Marcus_, May 05 2017
%Y A073335 Cf. A000041, A001222, A037032.
%K A073335 easy,nonn
%O A073335 1,3
%A A073335 _Vladeta Jovovic_, Aug 22 2002
%E A073335 More terms from _Emeric Deutsch_, Feb 26 2005