cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073337 Primes of the form 4*k^2 - 10*k + 7 with k positive.

This page as a plain text file.
%I A073337 #64 Apr 20 2025 11:18:54
%S A073337 3,13,31,241,307,463,757,1123,1723,3307,3541,4831,5113,5701,6007,8011,
%T A073337 9901,10303,11131,12433,13807,14281,17293,20023,20593,21757,23563,
%U A073337 24181,26083,28057,30103,35911,41413,43891,46441,53593,60271,78121,82657,86143,95791,108571,123553,127807,136531,145543,147073,156421
%N A073337 Primes of the form 4*k^2 - 10*k + 7 with k positive.
%C A073337 Primes of the form k^2 + k + 1 with k odd and positive. - _Peter Munn_, Jan 27 2018
%C A073337 Primes of the form A000217(2*k) + A000217(2*k+2). - _J. M. Bergot_, May 09 2018
%H A073337 Muniru A Asiru, <a href="/A073337/b073337.txt">Table of n, a(n) for n = 1..5000</a>
%F A073337 a(n) = A054554(A073338(n)). - _Elmo R. Oliveira_, Apr 20 2025
%e A073337 3 is a term because for k=2, 4*k^2 - 10*k + 7 = 3 a prime.
%e A073337 7 is not a term because 7 can only be obtained with k=0 or k=5/2.
%p A073337 select(isprime, [seq(4*n^2-10*n+7 ,n=2..300)]); # _Muniru A Asiru_, Apr 15 2018
%t A073337 Select[Table[4 n^2 - 10 n + 7, {n, 1, 200}], PrimeQ] (* _Vincenzo Librandi_, Dec 23 2019 *)
%o A073337 (PARI) select(isprime,vector(300,k,4*k^2 - 10*k + 7)) \\ _Joerg Arndt_, Feb 28 2018
%o A073337 (GAP) Filtered(List([2..300],n->4*n^2-10*n+7),IsPrime); # _Muniru A Asiru_, Apr 15 2018
%o A073337 (Magma) [a: n in [1..400] | IsPrime(a) where a is 4*n^2 - 10*n + 7]; // _Vincenzo Librandi_, Dec 23 2019
%Y A073337 Cf. A000217, A054554, A073338, A168026.
%Y A073337 Subset of A002383.
%K A073337 easy,nonn
%O A073337 1,1
%A A073337 _Zak Seidov_, Aug 25 2002
%E A073337 Edited by _Dean Hickerson_, Aug 28 2002
%E A073337 a(1)=7 inserted and typo in Mathematica code corrected by _Vincenzo Librandi_, Dec 09 2011
%E A073337 Incorrect term 7 removed by _Joerg Arndt_, Feb 28 2018