cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073345 Table T(n,k), read by ascending antidiagonals, giving the number of rooted plane binary trees of size n and height k.

This page as a plain text file.
%I A073345 #20 Mar 02 2024 10:37:21
%S A073345 1,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,6,0,0,
%T A073345 0,0,0,0,0,6,8,0,0,0,0,0,0,0,4,20,0,0,0,0,0,0,0,0,1,40,16,0,0,0,0,0,0,
%U A073345 0,0,0,68,56,0,0,0,0,0,0,0,0,0,0,94,152,32,0,0,0,0,0,0,0,0,0,0,114,376,144,0,0,0,0,0,0,0
%N A073345 Table T(n,k), read by ascending antidiagonals, giving the number of rooted plane binary trees of size n and height k.
%D A073345 Luo Jian-Jin, Catalan numbers in the history of mathematics in China, in Combinatorics and Graph Theory, (Yap, Ku, Lloyd, Wang, Editors), World Scientific, River Edge, NJ, 1995.
%H A073345 Alois P. Heinz, <a href="/A073345/b073345.txt">Antidiagonals n = 0..200, flattened</a>
%H A073345 Henry Bottomley and Antti Karttunen, <a href="/A073345/a073345.txt">Notes concerning diagonals of the square arrays A073345 and A073346</a>.
%H A073345 Andrew Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/doc/enumeration.html">Analytic methods in asymptotic enumeration</a>.
%F A073345 (See the Maple code below. Is there a nicer formula?)
%F A073345 This table was known to the Chinese mathematician Ming An-Tu, who gave the following recurrence in the 1730s. a(0, 0) = 1, a(n, k) = Sum[a(n-1, k-1-i)( 2*Sum[ a(j, i), {j, 0, n-2}]+a(n-1, i) ), {i, 0, k-1}]. - _David Callan_, Aug 17 2004
%F A073345 The generating function for row n, T_n(x):=Sum[T(n, k)x^k, k>=0], is given by T_n = a(n)-a(n-1) where a(n) is defined by the recurrence a(0)=0, a(1)=1, a(n) = 1 + x a(n-1)^2 for n>=2. - _David Callan_, Oct 08 2005
%e A073345 The top-left corner of this square array is
%e A073345   1 0 0 0 0 0 0 0 0 ...
%e A073345   0 1 0 0 0 0 0 0 0 ...
%e A073345   0 0 2 1 0 0 0 0 0 ...
%e A073345   0 0 0 4 6 6 4 1 0 ...
%e A073345   0 0 0 0 8 20 40 68 94 ...
%e A073345 E.g. we have A000108(3) = 5 binary trees built from 3 non-leaf (i.e. branching) nodes:
%e A073345 _______________________________3
%e A073345 ___\/__\/____\/__\/____________2
%e A073345 __\/____\/__\/____\/____\/_\/__1
%e A073345 _\/____\/____\/____\/____\./___0
%e A073345 The first four have height 3 and the last one has height 2, thus T(3,3) = 4, T(3,2) = 1 and T(3,any other value of k) = 0.
%p A073345 A073345 := n -> A073345bi(A025581(n), A002262(n));
%p A073345 A073345bi := proc(n,k) option remember; local i,j; if(0 = n) then if(0 = k) then RETURN(1); else RETURN(0); fi; fi; if(0 = k) then RETURN(0); fi; 2 * add(A073345bi(n-i-1,k-1) * add(A073345bi(i,j),j=0..(k-1)),i=0..floor((n-1)/2)) + 2 * add(A073345bi(n-i-1,k-1) * add(A073345bi(i,j),j=0..(k-2)),i=(floor((n-1)/2)+1)..(n-1)) - (`mod`(n,2))*(A073345bi(floor((n-1)/2),k-1)^2); end;
%p A073345 A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))),2) - (n+1);
%p A073345 A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))),2);
%t A073345 a[0, 0] = 1; a[n_, k_]/;k<n||k>2^n-1 := 0; a[n_, k_]/;1 <= n <= k <= 2^n-1 := a[n, k] = Sum[a[n-1, k-1-i](2Sum[ a[j, i], {j, 0, n-2}]+a[n-1, i]), {i, 0, k-1}]; Table[a[n, k], {n, 0, 9}, {k, 0, 9}]
%t A073345 (* or *) a[0] = 0; a[1] = 1; a[n_]/;n>=2 := a[n] = Expand[1 + x a[n-1]^2]; gfT[n_] := a[n]-a[n-1]; Map[CoefficientList[ #, x, 8]&, Table[gfT[n], {n, 9}]/.{x^i_/;i>=9 ->0}] (Callan)
%Y A073345 Variant: A073346. Column sums: A000108. Row sums: A001699.
%Y A073345 Diagonals: A073345(n, n) = A011782(n), A073345(n+3, n+2) = A014480(n), A073345(n+2, n) = A073773(n), A073345(n+3, n) = A073774(n) - _Henry Bottomley_ and AK, see the attached notes.
%Y A073345 A073429 gives the upper triangular region of this array. Cf. also A065329, A001263.
%K A073345 nonn,tabl
%O A073345 0,13
%A A073345 _Antti Karttunen_, Jul 31 2002