This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073375 #14 Sep 30 2022 01:45:29 %S A073375 1,6,33,140,546,1932,6454,20448,62271,183202,523887,1461516,3991400, %T A073375 10698072,28203612,73265056,187822125,475788222,1192287117,2958453036, %U A073375 7274927646,17741533668,42937126290 %N A073375 Fifth convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself. %H A073375 G. C. Greubel, <a href="/A073375/b073375.txt">Table of n, a(n) for n = 0..1000</a> %H A073375 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (6,-3,-40,45,126,-141,-252,180,320,-48,-192,-64). %F A073375 a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A001045(k+1) and c(k) = A073374(k). %F A073375 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+5, 5) * binomial(n-k, k) * 2^k. %F A073375 a(n) = (n+3)*(n+9)*((3080 +1086*n +93*n^2)*(n+1)*U(n+1) + 2*(1660 +591*n +51*n^2) *(n+2)*U(n))/(5!*3^7) with U(n) = A001045(n+1), n>=0. %F A073375 G.f.: 1/(1-(1+2*x)*x)^6 = 1/((1+x)*(1-2*x))^6. %F A073375 E.g.f.: (1/787320)*(1024*(675 +3470*x +4195*x^2 +1830*x^3 +315*x^4 +18*x^5 )*exp(2*x) + (96120 -115640*x +42440*x^2 -6360*x^3 +405*x^4 -9*x^5)*exp(-x)). - _G. C. Greubel_, Sep 29 2022 %t A073375 Table[(n+3)*(n+9)*(2^(6+n)*(9*n^3 +117*n^2 +438*n +400) +(-1)^n*(9*n^3 +207*n^2 + 1518*n +3560))/787320, {n,0,40}] (* _G. C. Greubel_, Sep 29 2022 *) %o A073375 (Magma) [(n+3)*(n+9)*(2^(6+n)*(9*n^3 +117*n^2 +438*n +400) +(-1)^n*(9*n^3 +207*n^2 + 1518*n +3560))/787320: n in [0..40]]; // _G. C. Greubel_, Sep 29 2022 %o A073375 (SageMath) %o A073375 def A073375(n): return (n+3)*(n+9)*(2^(6+n)*(9*n^3 +117*n^2 +438*n +400) +(-1)^n*(9*n^3 +207*n^2 + 1518*n +3560))/787320 %o A073375 [A073375(n) for n in range(40)] # _G. C. Greubel_, Sep 29 2022 %Y A073375 Sixth (m=5) column of triangle A073370. %Y A073375 Cf. A001045, A073374. %K A073375 nonn,easy %O A073375 0,2 %A A073375 _Wolfdieter Lang_, Aug 02 2002