This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073394 #25 Nov 21 2023 16:16:53 %S A073394 1,16,160,1248,8304,49344,269184,1372800,6628512,30584576,135804416, %T A073394 583471616,2436145920,9919484928,39503038464,154230921216, %U A073394 591550292736,2232748892160,8305370185728,30486351396864,110551407403008,396424924397568,1406924861276160,4945692873129984,17231635316293632 %N A073394 Seventh convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself. %H A073394 G. C. Greubel, <a href="/A073394/b073394.txt">Table of n, a(n) for n = 0..1000</a> %H A073394 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (16,-96,224,112,-1344,896,3712,-3168,-7424,3584,10752,1792,-7168,-6144,-2048,-256). %F A073394 a(n) = Sum_{k=0..n} b(k)*c(n-k) with b(k) = A002605(k) and c(k) = A073393(k). %F A073394 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+7, 7)*binomial(n-k, k)*2^(n-k). %F A073394 a(n) = ((2322320 + 2869040*n + 1379232*n^2 + 332247*n^3 + 42533*n^4 + 2757*n^5 + 71*n^6)*(n+1)*U(n+1) + 4*(235900 + 375554*n + 207009*n^2 + 54174*n^3 + 7318*n^4 + 492*n^5 + 13*n^6)*(n+2)*U(n))/(2^8*3^6*5*7), with U(n) = A002605(n), n >= 0. %F A073394 G.f.: 1/(1-2*x*(1+x))^8. %e A073394 G.f. = 1 + 16*x + 160*x^2 + 1248*x^3 + ... + 154230921216*x^15 + 591550292736*x^16 + 2232748892160*x^17 + 8305370185728*x^18 + ... - _Zerinvary Lajos_, Jun 03 2009 %t A073394 CoefficientList[Series[1/(1-2*x-2*x^2)^8, {x,0,30}], x] (* _G. C. Greubel_, Oct 06 2022 *) %t A073394 LinearRecurrence[{16,-96,224,112,-1344,896,3712,-3168,-7424,3584,10752,1792,-7168,-6144,-2048,-256},{1,16,160,1248,8304,49344,269184,1372800,6628512,30584576,135804416,583471616,2436145920,9919484928,39503038464,154230921216},30] (* _Harvey P. Dale_, Nov 21 2023 *) %o A073394 (SageMath) taylor( 1/(1-2*x-2*x^2)^8, x, 0, 26).list() # _Zerinvary Lajos_, Jun 03 2009; modified by _G. C. Greubel_, Oct 06 2022 %o A073394 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^8 )); // _G. C. Greubel_, Oct 06 2022 %Y A073394 Eighth (m=7) column of triangle A073387. %Y A073394 Cf. A002605, A073393. %K A073394 nonn,easy %O A073394 0,2 %A A073394 _Wolfdieter Lang_, Aug 02 2002 %E A073394 Terms a(19) onward added by _G. C. Greubel_, Oct 06 2022