This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073396 #33 Dec 23 2024 14:53:42 %S A073396 16,27,150 %N A073396 The number n equals the product of two numbers: sums of prime factors of n, with and without repetition. %C A073396 Numbers n such that n = A008472(n)*A001414(n) (= sum of distinct prime factors of n, times sum of prime factors of n with repetition). - _M. F. Hasler_, May 05 2013 %H A073396 Max Alekseyev, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2013-May/011115.html">Proof of finiteness of A073396</a>, SeqFan Mailing List, May 4, 2013. %F A073396 a(n) = A073395(a(n)). %F A073396 A073396 = { n | n = A008472(n)*A001414(n) }. - _M. F. Hasler_, May 05 2013 %e A073396 A073395(150) = A073395(2*3*5*5) = A008472(2*3*5*5)*A001414(2*3*5*5) = (2+3+5)*(2+3+5+5) = 10*15 = 150, therefore 150 is a term. %t A073396 okQ[n_] := n>1 && With[{f = FactorInteger[n]}, n == Total[Times @@@ f]* Total[f[[All, 1]]]]; %t A073396 Select[Range[1000], okQ] (* _Jean-François Alcover_, Apr 06 2021 *) %Y A073396 Cf. A008472, A001414. %K A073396 nonn,full,fini,bref %O A073396 1,1 %A A073396 _Reinhard Zumkeller_, Jul 30 2002 %E A073396 Proof that there are no further terms added by _Max Alekseyev_, May 04 2013