This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073423 #35 Jan 19 2025 22:38:30 %S A073423 2,1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0, %T A073423 0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0, %U A073423 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A073423 Sums of two powers of zero: triangle read by rows: T(m,n) = 0^n + 0^m, n >= 0, m = 0..n. %H A073423 Antti Karttunen, <a href="/A073423/b073423.txt">Table of n, a(n) for n = 0..22154; the first 210 rows of the triangle</a> %H A073423 Mohammad K. Azarian, <a href="https://doi.org/10.12988/imf.2022.912321">Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions</a>, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141. See Conjecture 4.9, p. 138. %F A073423 a(0) = 2; and for n > 0, a(n) = A010054(n). [As a flat sequence] - _Antti Karttunen_, Jan 19 2025 %e A073423 T(2,1) = 0^2 + 0^0 = 1. %e A073423 Triangle begins: %e A073423 2; %e A073423 1, 0; %e A073423 1, 0, 0; %e A073423 1, 0, 0, 0; %e A073423 1, 0, 0, 0, 0; %e A073423 1, 0, 0, 0, 0, 0; %e A073423 ... %o A073423 (Python) %o A073423 from math import isqrt %o A073423 def A073423(n): return int((k:=n<<1)==(m:=isqrt(k))*(m+1)) if n else 2 # _Chai Wah Wu_, Nov 09 2024 %o A073423 (PARI) A073423(n) = if(!n,2,ispolygonal(n,3)); \\ _Antti Karttunen_, Jan 19 2025 %Y A073423 Cf. A023531, A010054, A073424. %Y A073423 Column k=0 gives A054977. %K A073423 easy,nonn,tabl %O A073423 0,1 %A A073423 _Jeremy Gardiner_, Jul 30 2002